Skip to main content
Log in

Yolk-like Fe3O4@C–Au@void@TiO2–Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we present the design and implementation of a type of yolk-like Fe3O4@C–Au@void@TiO2–Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye and rapid magnetic separation. The resulting composite microspheres exhibited yolk-like hierarchical structures with a 236.3 m2 g−1 surface area and a high-saturation magnetization of 31.5 emu g−1. As an example of applications, the photodegradation of Rhodamine B (RhB) in the presence of NaBH4 was investigated under simulated sunlight irradiation. The results show that the photocatalytic activity of the yolk-like Fe3O4@C–Au@void@TiO2–Pd microcomposites in the RhB photodegradation is higher than the Fe3O4@C–Au@void@TiO2 and Fe3O4@C@TiO2 microcomposites, as they can degrade RhB with 40 min of irradiation time. In addition, by magnetic separation, the as-prepared yolk-like Fe3O4@C–Au@void@TiO2–Pd hierarchical microcomposites can be completely separated and reused for four times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L.T. Gibson, Mesosilica materials and organic pollutant adsorption: part B removal from aqueous solution. Chem. Soc. Rev. 43(15), 5173–5182 (2014)

    Article  Google Scholar 

  2. N. Kannan, M.M.Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study. Dyes Pigments. 51(1), 25–40 (2001)

    Article  Google Scholar 

  3. P. Pandit, S. Basu, Removal of ionic dyes from water by solvent extraction using reverse micelles. Environ. Sci. Technol. 38(8), 2435–2442 (2014)

    Article  ADS  Google Scholar 

  4. B. Neppolian, H.C. Choi, S. Sakthivel, Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater. 89(2), 303–317 (2002)

    Article  Google Scholar 

  5. M. Nasrollahzadeh, S.M. Sajadi, M. Rostami-Vartooni, R. Bagherzadeh, Immobilization of copper nanoparticles on perlite: green synthesis, characterization and catalytic activity on aqueous reduction of 4-nitrophenol. J Molec. Catal. A Chem. 400(32), 22–30 (2015)

    Article  Google Scholar 

  6. D. Jana, G. De, Controlled and stepwise generation of Cu2O, Cu2O@Cu and Cu nanoparticles inside the transparent alumina films and their catalytic activity. Rsc Adv. 2(25), 9606–9613 (2012)

    Article  Google Scholar 

  7. A. Chakravarty, K. Bhowmik, A. Mukherjee, Cu2O nanoparticles anchored on amine-functionalized graphite nanosheet: a potential reusable catalyst. Lang. ACS J Surf. Coll. 31(18), 5210–5219 (2015)

    Article  Google Scholar 

  8. M.R. Kim, K.L. Dong, D.J. Jang, Facile fabrication of hollow Pt/Ag nanocomposites having enhanced catalytic properties. Appl. Catal. B Environ. 103(1–2), 253–260 (2011)

    Article  Google Scholar 

  9. K. Satoh, S. Ishihara, S. Nanoparticles, Facile synthesis and their catalytic application for the degradation of dyes. Rsc Adv. 5(33), 25781–25788 (2015)

    Article  Google Scholar 

  10. C. Wang, K. Tang, D. Wang, Z. Liu, L. Wang, Simple self-assembly of HLaNb2O7 nanosheets and Ag nanoparticles/clusters and their catalytic properties. J. Mater. Chem. 22(43), 22929–22934 (2012)

    Article  Google Scholar 

  11. A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  12. N. Nishioka, T.S. Koizumi, Synthesis of novel nitrogen-containing polymers by Pd(0)-catalyzed polycondensation of propargylic carbonates and bifunctional nitrogen nucleophiles. Eur. Polym. J 47(5), 1142–1150 (2011)

    Article  Google Scholar 

  13. W. Zhao, W. Wang, F. Zhang, X. Zhuang, S. Han, X. Feng, One-pot approach to Pd-loaded porous polymers with properties tunable by the oxidation state of the phosphorus core. Polym. Chem. 6(35), 6351–6357 (2015)

    Article  Google Scholar 

  14. G. Liu, H. Ji, X. Yang, Y. Wang, Synthesis of a Au/silica/polymer trilayer composite and the corresponding hollow polymer microsphere with a movable Au core. Langmuir 24(3), 1019–1025 (2008)

    Article  Google Scholar 

  15. M. Tagliazucchi, M.G. Blaber, G.C. Schatz, E.A. Weiss, I. Szleifer, Optical properties of responsive hybrid Au@polymer nanoparticles. Acs Nano. 6(9), 8397–8406 (2012)

    Article  Google Scholar 

  16. Q. Tian, X. Yu, L. Zhang, D. Yu, Monodisperse raspberry-like multihollow polymer/Ag nanocomposite microspheres for rapid catalytic degradation of methylene blue. J Coll. Inter. Sci. 491, 294–304 (2017)

    Article  ADS  Google Scholar 

  17. A. Kadir, M. Wu, K. Aslan, M. Wu, J.R. Lakowicz, C.D. Geddes, Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J AM. Chem. Soc. 129(6), 1524–1525 (2007)

    Article  Google Scholar 

  18. J. Lee, C.P. Ji, H. Song, A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 20(8), 1523–1528 (2008)

    Article  ADS  Google Scholar 

  19. Y. Lu, Y.D. Yin, Z.Y. Li, Y.N. Xia, Synthesis and self-assembly of Au@SiO2 core-shell colloids. Nano Lett. 2(7), 785–788 (2002)

    Article  ADS  Google Scholar 

  20. K. Hareesh, J.F. Williams, N.A. Dhole, K.M. Kodam, V.N. Bhoraskar, S.D. Dhole, Bio-green synthesis of Ag–GO, Au–GO and Ag–Au–GO nanocomposites using azadirachta indica: its application in sers and cell viability. Mater. Res. Exp. 3(7), 075010–075017 (2016)

    Article  Google Scholar 

  21. H.K. He, G. Chao, Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: synthesis, characterization, and catalysis applications. Sci. China Chem. 54(2), 397–404 (2011)

    Article  Google Scholar 

  22. G. Li, Z. Tang, Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. Nanoscale 45(27), 3995–4011 (2014)

    Article  ADS  Google Scholar 

  23. B. Liu, Z. Zhao, G. Henkelman, W. Song, Computational design of a CeO2-supported Pd-based bimetallic nanorod for CO oxidation. J Phy. Chem. C 120(10), 5557–5564 (2016)

    Article  Google Scholar 

  24. L. Muñoz-Fernandez, A. Sierra-Fernandez, O. Milošević, M.E. Rabanal, Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation. Adv. Powder Technol. 27(3), 983–993 (2016)

    Article  Google Scholar 

  25. Y. Pang, C. Wang, J. Wang, Z. Sun, R. Xiao, S. Wang, Fe3O4@Ag magnetic nanoparticles for microrna capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens. Bioelectron. 79, 574–580 (2015)

    Article  Google Scholar 

  26. F.H. Lin, W. Chen, Y.H. Liao, R.A. Dong, Y. Li, Effective approach for the synthesis of monodisperse magnetic nanocrystals and m-Fe3O4, (m = Ag, Au, Pt, Pd) heterostructures. Nano Res. 4(12), 1223–1232 (2011)

    Article  Google Scholar 

  27. G.M. Haselmann, D. Eder, Early-stage deactivation of platinum-loaded TiO2 using in situ photodeposition during photocatalytic hydrogen evolution. ACS Catal. 7, 4668–4675 (2017)

    Article  Google Scholar 

  28. Q. Guo, C.Y. Zhou, Z.B. Ma, Z.F. Ren, H.J. Fan, X.M. Yang, Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45, 3701–3730 (2016)

    Article  Google Scholar 

  29. X.M. Zhou, N. Liu, P. Schmuki, Photocatalysis with TiO2 nanotubes: “colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal. 7(5), 3210–3235 (2017)

    Article  Google Scholar 

  30. S.L. Wang, J. Li, S. Wang et al., Two-Dimensional C/TiO2 heterogeneous hybrid for noble-metal-free hydrogen evolution. ACS Catal. 7(10), 6892–6900 (2017)

    Article  Google Scholar 

  31. T. Renjis, A. Tom, N. Sreekumaran, S. Navinder, Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: one-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19(8), 3439–3445 (2013)

    Google Scholar 

  32. M. Wang, J. Han, H. Xiong, R. Guo, Yolk@shell nanoarchitecture of Au@r-GO/TiO2 hybrids as powerful visible light photocatalysts. Langmuir 31(22), 6220–6228 (2015)

    Article  Google Scholar 

  33. I. Lee, J.B. Joo, Y. Yin, F. Zaera, A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem. Int. Edit. 50(43), 10208–10211 (2015)

    Article  Google Scholar 

  34. D. Xu, G. Yan, M. Gao, C. Deng, X. Zhang, Selective enrichment of glycopeptides/ phosphopeptides using Fe3O4@Au-B(OH)2@mTiO2, core-shell micro-spheres. Talanta 166, 154–161 (2017)

    Article  Google Scholar 

  35. H. Huo, X. Li, X. Zhou, L. Jiao, S. Zhao, L. Zhang, Fabrication of Ag/gamma- Fe2O3@TiO2 hollow magnetic core-shell nanospheres as highly efficient catalysts for the synthesis of beta-enaminones. Rsc Adv. 5(90), 73612–73618 (2015)

    Article  Google Scholar 

  36. M. Shen, S. Chen, W. Jia, G. Fan, Y. Jin, H. Liang, Highly efficient and porous TiO2-coated Ag@Fe3O4@C–Au microspheres for degradation of organic pollutants. J. Nanopart. Res. 18(12), 356–361 (2016)

    Article  ADS  Google Scholar 

  37. W. Hu, B. Liu, Q. Wang, Y. Liu, Y. Liu, P. Jing, A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications. Chem. Commun. 49(69), 7596–7598 (2013)

    Article  Google Scholar 

  38. H. Zhang, Y. Zhang, Y. Zhou, C. Zhang, Q. Wang, Y. Xu, Synthesis and characterization of a multifunctional nanocatalyst based on a novel type of binary-metal-oxide-coated Fe3O4–Au nanoparticle. Rsc Adv. 6(22), 18685–18694 (2016)

    Article  Google Scholar 

  39. Y. Zhou, Y. Zhu, X. Yang, J. Huang, W. Chen, X. Lv, C.Y. Li, C.Z. Li, Au decorated Fe3O4@TiO2 magnetic composites with visible light-assisted enhanced catalytic reduction of 4-nitrophenol. Rsc Adv. 5(62), 50454–50461 (2015)

    Article  Google Scholar 

  40. R. Malik, V. Chaudhary, V.K. Tomer, P.S. Rana, S.P. Nehra, S. Duhan, Visible light-driven mesoporous Au–TiO2/SiO2, photocatalysts for advanced oxidation process. Ceram. Int. 42(9), 10892–10901 (2016)

    Article  Google Scholar 

  41. M.M. Khan, J. Lee, M.H. Cho, Au@TiO2, nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J Ind. Eng. Chem. 20(4), 1584–1590 (2014)

    Article  Google Scholar 

  42. D. Qi, H. Zhang, J. Tang, C. Deng, X. Zhang, Facile synthesis of mercaptophenylboronic acid-functionalized core-shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins. J Phy. Chem. C 114(20), 9221–9226 (2010)

    Article  Google Scholar 

  43. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129(45), 13939–13948 (2007)

    Article  Google Scholar 

  44. C. Li, R. Younesi, Y. Cai, Y. Zhu, M. Ma, J. Zhu, Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2, core–shell microspheres. Appl. Catal. B Environ. 156–157(9), 314–322 (2014)

    Article  Google Scholar 

  45. G. Chen, Y. Wang, J. Zhang, C.L. Wu, H.D. Liang, H. Yang, Preparation and characterization of visible-light-driven TiO2 photocatalyst Co-doped with nitrogen and erbium. J Nanosci. Nanotechno 12(5), 3799–3805 (2012)

    Article  Google Scholar 

  46. H. Khojasteh, M. Salavatiniasari, M.P. Mazhari, M. Hamadanian, Preparation and characterization of Fe3O4@SiO2@TiO2@Pd and Fe3O4@SiO2@TiO2@Pd–Ag nano composites and their utilization in enhanced degradation systems and rapid magnetic separation. Rsc Adv. 6(89), 86385–86385 (2016)

    Article  Google Scholar 

  47. S. Liu, M.X. Guo, F. Shao, Y.H. Peng, S.W. Bian, Water-dispersible and magnetically recoverable Fe3O4/Pd@nitrogen-doped carbon composite catalysts for the catalytic reduction of 4-nitrophenol. Rsc Adv. 6(80), 76128–76131 (2016)

    Article  Google Scholar 

  48. M. Zhang, J. Zheng, Y. Zheng, J. Xu, X. He, L. Chen, Preparation, characterization and catalytic activity of core-satellite Au/pdop/SiO2/Fe3O4 magnetic nanocomposites. Rsc Adv. 3(33), 13818–13824 (2013)

    Article  Google Scholar 

  49. Y. Jin, J. Zhao, F. Li, W. Jia, D. Liang, H. Chen, Nitrogen-doped graphene supported palladium-nickel nanoparticles with enhanced catalytic performance for formic acid oxidation. Electrochim. Acta 220, 83–90 (2016)

    Article  Google Scholar 

  50. P. Xu, Z. Shen, B. Zhang, J. Wang, R. Wu, Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents. Appl. Surf. Sci. 289(15), 560–566 (2016)

    Article  ADS  Google Scholar 

  51. S. Kesavan, D.R. Kumar, M.L. Baynosa, J.J. Shim, Potentiodynamic formation of diaminobenzene films on an electrochemically reduced graphene oxide surface: determination of nitrite in water samples. Mater. Sci. Engin. C 85(1), 97–106 (2018)

    Article  Google Scholar 

  52. M. Zhou, J. Zhang, B. Cheng, H. Yu, Enhancement of visible-light photocatalytic activity of mesoporous Au-TiO2 nanocomposites by surface Plasmon resonance. Int. J Photoenergy (1110-662X), 2058–2069 (2012)

  53. J.Q. Ma, S.B. Guo, X.H. Guo, H.G. Ge, Liquid-phase deposition of TiO2, nanoparticles on core-shell Fe3O4@SiO2, spheres: preparation, characterization, and photocatalytic activity. J. Nanopart. Res. 17(7), 1–11 (2015)

    Article  Google Scholar 

  54. L. Sun, H.E. Jiang, A.N. Song, J. Zhang, J. Zheng, D. Ren, Recyclable Fe3O4@SiO2–Ag magnetic nanospheres for the rapid decolorizing of dye pollutants. Chin. J Catal. 34(7), 1378–1385 (2013)

    Article  Google Scholar 

  55. S.K. Lee, A. Mills, C.O. Rourke, Action spectra in semiconductor photocatalysis. Chem. Soc. Rev. 46(16), 4877–4894 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support for this research from the General research project of Zhejiang Provincial Department of Education (Y201636639) and the Scientific Research Fund of Zhejiang Provincial Education Department (Y201224099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Liang, H., Shen, M. et al. Yolk-like Fe3O4@C–Au@void@TiO2–Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye. Appl. Phys. A 124, 305 (2018). https://doi.org/10.1007/s00339-018-1724-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1724-0

Navigation