Applied Physics A

, 124:305 | Cite as

Yolk-like Fe3O4@C–Au@void@TiO2–Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye

  • Suqing Chen
  • Huading Liang
  • Mao Shen
  • Yanxian Jin


In this paper, we present the design and implementation of a type of yolk-like Fe3O4@C–Au@void@TiO2–Pd hierarchical microspheres with visible light-assisted enhanced photocatalytic degradation of dye and rapid magnetic separation. The resulting composite microspheres exhibited yolk-like hierarchical structures with a 236.3 m2 g−1 surface area and a high-saturation magnetization of 31.5 emu g−1. As an example of applications, the photodegradation of Rhodamine B (RhB) in the presence of NaBH4 was investigated under simulated sunlight irradiation. The results show that the photocatalytic activity of the yolk-like Fe3O4@C–Au@void@TiO2–Pd microcomposites in the RhB photodegradation is higher than the Fe3O4@C–Au@void@TiO2 and Fe3O4@C@TiO2 microcomposites, as they can degrade RhB with 40 min of irradiation time. In addition, by magnetic separation, the as-prepared yolk-like Fe3O4@C–Au@void@TiO2–Pd hierarchical microcomposites can be completely separated and reused for four times.



The authors gratefully acknowledge the support for this research from the General research project of Zhejiang Provincial Department of Education (Y201636639) and the Scientific Research Fund of Zhejiang Provincial Education Department (Y201224099).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    L.T. Gibson, Mesosilica materials and organic pollutant adsorption: part B removal from aqueous solution. Chem. Soc. Rev. 43(15), 5173–5182 (2014)CrossRefGoogle Scholar
  2. 2.
    N. Kannan, M.M.Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study. Dyes Pigments. 51(1), 25–40 (2001)CrossRefGoogle Scholar
  3. 3.
    P. Pandit, S. Basu, Removal of ionic dyes from water by solvent extraction using reverse micelles. Environ. Sci. Technol. 38(8), 2435–2442 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    B. Neppolian, H.C. Choi, S. Sakthivel, Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater. 89(2), 303–317 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Nasrollahzadeh, S.M. Sajadi, M. Rostami-Vartooni, R. Bagherzadeh, Immobilization of copper nanoparticles on perlite: green synthesis, characterization and catalytic activity on aqueous reduction of 4-nitrophenol. J Molec. Catal. A Chem. 400(32), 22–30 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Jana, G. De, Controlled and stepwise generation of Cu2O, Cu2O@Cu and Cu nanoparticles inside the transparent alumina films and their catalytic activity. Rsc Adv. 2(25), 9606–9613 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Chakravarty, K. Bhowmik, A. Mukherjee, Cu2O nanoparticles anchored on amine-functionalized graphite nanosheet: a potential reusable catalyst. Lang. ACS J Surf. Coll. 31(18), 5210–5219 (2015)CrossRefGoogle Scholar
  8. 8.
    M.R. Kim, K.L. Dong, D.J. Jang, Facile fabrication of hollow Pt/Ag nanocomposites having enhanced catalytic properties. Appl. Catal. B Environ. 103(1–2), 253–260 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Satoh, S. Ishihara, S. Nanoparticles, Facile synthesis and their catalytic application for the degradation of dyes. Rsc Adv. 5(33), 25781–25788 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Wang, K. Tang, D. Wang, Z. Liu, L. Wang, Simple self-assembly of HLaNb2O7 nanosheets and Ag nanoparticles/clusters and their catalytic properties. J. Mater. Chem. 22(43), 22929–22934 (2012)CrossRefGoogle Scholar
  11. 11.
    A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)CrossRefGoogle Scholar
  12. 12.
    N. Nishioka, T.S. Koizumi, Synthesis of novel nitrogen-containing polymers by Pd(0)-catalyzed polycondensation of propargylic carbonates and bifunctional nitrogen nucleophiles. Eur. Polym. J 47(5), 1142–1150 (2011)CrossRefGoogle Scholar
  13. 13.
    W. Zhao, W. Wang, F. Zhang, X. Zhuang, S. Han, X. Feng, One-pot approach to Pd-loaded porous polymers with properties tunable by the oxidation state of the phosphorus core. Polym. Chem. 6(35), 6351–6357 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Liu, H. Ji, X. Yang, Y. Wang, Synthesis of a Au/silica/polymer trilayer composite and the corresponding hollow polymer microsphere with a movable Au core. Langmuir 24(3), 1019–1025 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Tagliazucchi, M.G. Blaber, G.C. Schatz, E.A. Weiss, I. Szleifer, Optical properties of responsive hybrid Au@polymer nanoparticles. Acs Nano. 6(9), 8397–8406 (2012)CrossRefGoogle Scholar
  16. 16.
    Q. Tian, X. Yu, L. Zhang, D. Yu, Monodisperse raspberry-like multihollow polymer/Ag nanocomposite microspheres for rapid catalytic degradation of methylene blue. J Coll. Inter. Sci. 491, 294–304 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    A. Kadir, M. Wu, K. Aslan, M. Wu, J.R. Lakowicz, C.D. Geddes, Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J AM. Chem. Soc. 129(6), 1524–1525 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Lee, C.P. Ji, H. Song, A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 20(8), 1523–1528 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Lu, Y.D. Yin, Z.Y. Li, Y.N. Xia, Synthesis and self-assembly of Au@SiO2 core-shell colloids. Nano Lett. 2(7), 785–788 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    K. Hareesh, J.F. Williams, N.A. Dhole, K.M. Kodam, V.N. Bhoraskar, S.D. Dhole, Bio-green synthesis of Ag–GO, Au–GO and Ag–Au–GO nanocomposites using azadirachta indica: its application in sers and cell viability. Mater. Res. Exp. 3(7), 075010–075017 (2016)CrossRefGoogle Scholar
  21. 21.
    H.K. He, G. Chao, Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: synthesis, characterization, and catalysis applications. Sci. China Chem. 54(2), 397–404 (2011)CrossRefGoogle Scholar
  22. 22.
    G. Li, Z. Tang, Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. Nanoscale 45(27), 3995–4011 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    B. Liu, Z. Zhao, G. Henkelman, W. Song, Computational design of a CeO2-supported Pd-based bimetallic nanorod for CO oxidation. J Phy. Chem. C 120(10), 5557–5564 (2016)CrossRefGoogle Scholar
  24. 24.
    L. Muñoz-Fernandez, A. Sierra-Fernandez, O. Milošević, M.E. Rabanal, Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation. Adv. Powder Technol. 27(3), 983–993 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Pang, C. Wang, J. Wang, Z. Sun, R. Xiao, S. Wang, Fe3O4@Ag magnetic nanoparticles for microrna capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosens. Bioelectron. 79, 574–580 (2015)CrossRefGoogle Scholar
  26. 26.
    F.H. Lin, W. Chen, Y.H. Liao, R.A. Dong, Y. Li, Effective approach for the synthesis of monodisperse magnetic nanocrystals and m-Fe3O4, (m = Ag, Au, Pt, Pd) heterostructures. Nano Res. 4(12), 1223–1232 (2011)CrossRefGoogle Scholar
  27. 27.
    G.M. Haselmann, D. Eder, Early-stage deactivation of platinum-loaded TiO2 using in situ photodeposition during photocatalytic hydrogen evolution. ACS Catal. 7, 4668–4675 (2017)CrossRefGoogle Scholar
  28. 28.
    Q. Guo, C.Y. Zhou, Z.B. Ma, Z.F. Ren, H.J. Fan, X.M. Yang, Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 45, 3701–3730 (2016)CrossRefGoogle Scholar
  29. 29.
    X.M. Zhou, N. Liu, P. Schmuki, Photocatalysis with TiO2 nanotubes: “colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal. 7(5), 3210–3235 (2017)CrossRefGoogle Scholar
  30. 30.
    S.L. Wang, J. Li, S. Wang et al., Two-Dimensional C/TiO2 heterogeneous hybrid for noble-metal-free hydrogen evolution. ACS Catal. 7(10), 6892–6900 (2017)CrossRefGoogle Scholar
  31. 31.
    T. Renjis, A. Tom, N. Sreekumaran, S. Navinder, Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: one-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19(8), 3439–3445 (2013)Google Scholar
  32. 32.
    M. Wang, J. Han, H. Xiong, R. Guo, Yolk@shell nanoarchitecture of Au@r-GO/TiO2 hybrids as powerful visible light photocatalysts. Langmuir 31(22), 6220–6228 (2015)CrossRefGoogle Scholar
  33. 33.
    I. Lee, J.B. Joo, Y. Yin, F. Zaera, A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem. Int. Edit. 50(43), 10208–10211 (2015)CrossRefGoogle Scholar
  34. 34.
    D. Xu, G. Yan, M. Gao, C. Deng, X. Zhang, Selective enrichment of glycopeptides/ phosphopeptides using Fe3O4@Au-B(OH)2@mTiO2, core-shell micro-spheres. Talanta 166, 154–161 (2017)CrossRefGoogle Scholar
  35. 35.
    H. Huo, X. Li, X. Zhou, L. Jiao, S. Zhao, L. Zhang, Fabrication of Ag/gamma- Fe2O3@TiO2 hollow magnetic core-shell nanospheres as highly efficient catalysts for the synthesis of beta-enaminones. Rsc Adv. 5(90), 73612–73618 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Shen, S. Chen, W. Jia, G. Fan, Y. Jin, H. Liang, Highly efficient and porous TiO2-coated Ag@Fe3O4@C–Au microspheres for degradation of organic pollutants. J. Nanopart. Res. 18(12), 356–361 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    W. Hu, B. Liu, Q. Wang, Y. Liu, Y. Liu, P. Jing, A magnetic double-shell microsphere as a highly efficient reusable catalyst for catalytic applications. Chem. Commun. 49(69), 7596–7598 (2013)CrossRefGoogle Scholar
  38. 38.
    H. Zhang, Y. Zhang, Y. Zhou, C. Zhang, Q. Wang, Y. Xu, Synthesis and characterization of a multifunctional nanocatalyst based on a novel type of binary-metal-oxide-coated Fe3O4–Au nanoparticle. Rsc Adv. 6(22), 18685–18694 (2016)CrossRefGoogle Scholar
  39. 39.
    Y. Zhou, Y. Zhu, X. Yang, J. Huang, W. Chen, X. Lv, C.Y. Li, C.Z. Li, Au decorated Fe3O4@TiO2 magnetic composites with visible light-assisted enhanced catalytic reduction of 4-nitrophenol. Rsc Adv. 5(62), 50454–50461 (2015)CrossRefGoogle Scholar
  40. 40.
    R. Malik, V. Chaudhary, V.K. Tomer, P.S. Rana, S.P. Nehra, S. Duhan, Visible light-driven mesoporous Au–TiO2/SiO2, photocatalysts for advanced oxidation process. Ceram. Int. 42(9), 10892–10901 (2016)CrossRefGoogle Scholar
  41. 41.
    M.M. Khan, J. Lee, M.H. Cho, Au@TiO2, nanocomposites for the catalytic degradation of methyl orange and methylene blue: an electron relay effect. J Ind. Eng. Chem. 20(4), 1584–1590 (2014)CrossRefGoogle Scholar
  42. 42.
    D. Qi, H. Zhang, J. Tang, C. Deng, X. Zhang, Facile synthesis of mercaptophenylboronic acid-functionalized core-shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins. J Phy. Chem. C 114(20), 9221–9226 (2010)CrossRefGoogle Scholar
  43. 43.
    X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, Size control of gold nanocrystals in citrate reduction: the third role of citrate. J. Am. Chem. Soc. 129(45), 13939–13948 (2007)CrossRefGoogle Scholar
  44. 44.
    C. Li, R. Younesi, Y. Cai, Y. Zhu, M. Ma, J. Zhu, Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2, core–shell microspheres. Appl. Catal. B Environ. 156–157(9), 314–322 (2014)CrossRefGoogle Scholar
  45. 45.
    G. Chen, Y. Wang, J. Zhang, C.L. Wu, H.D. Liang, H. Yang, Preparation and characterization of visible-light-driven TiO2 photocatalyst Co-doped with nitrogen and erbium. J Nanosci. Nanotechno 12(5), 3799–3805 (2012)CrossRefGoogle Scholar
  46. 46.
    H. Khojasteh, M. Salavatiniasari, M.P. Mazhari, M. Hamadanian, Preparation and characterization of Fe3O4@SiO2@TiO2@Pd and Fe3O4@SiO2@TiO2@Pd–Ag nano composites and their utilization in enhanced degradation systems and rapid magnetic separation. Rsc Adv. 6(89), 86385–86385 (2016)CrossRefGoogle Scholar
  47. 47.
    S. Liu, M.X. Guo, F. Shao, Y.H. Peng, S.W. Bian, Water-dispersible and magnetically recoverable Fe3O4/Pd@nitrogen-doped carbon composite catalysts for the catalytic reduction of 4-nitrophenol. Rsc Adv. 6(80), 76128–76131 (2016)CrossRefGoogle Scholar
  48. 48.
    M. Zhang, J. Zheng, Y. Zheng, J. Xu, X. He, L. Chen, Preparation, characterization and catalytic activity of core-satellite Au/pdop/SiO2/Fe3O4 magnetic nanocomposites. Rsc Adv. 3(33), 13818–13824 (2013)CrossRefGoogle Scholar
  49. 49.
    Y. Jin, J. Zhao, F. Li, W. Jia, D. Liang, H. Chen, Nitrogen-doped graphene supported palladium-nickel nanoparticles with enhanced catalytic performance for formic acid oxidation. Electrochim. Acta 220, 83–90 (2016)CrossRefGoogle Scholar
  50. 50.
    P. Xu, Z. Shen, B. Zhang, J. Wang, R. Wu, Synthesis and characterization of superparamagnetic iron oxide nanoparticles as calcium-responsive MRI contrast agents. Appl. Surf. Sci. 289(15), 560–566 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    S. Kesavan, D.R. Kumar, M.L. Baynosa, J.J. Shim, Potentiodynamic formation of diaminobenzene films on an electrochemically reduced graphene oxide surface: determination of nitrite in water samples. Mater. Sci. Engin. C 85(1), 97–106 (2018)CrossRefGoogle Scholar
  52. 52.
    M. Zhou, J. Zhang, B. Cheng, H. Yu, Enhancement of visible-light photocatalytic activity of mesoporous Au-TiO2 nanocomposites by surface Plasmon resonance. Int. J Photoenergy (1110-662X), 2058–2069 (2012)Google Scholar
  53. 53.
    J.Q. Ma, S.B. Guo, X.H. Guo, H.G. Ge, Liquid-phase deposition of TiO2, nanoparticles on core-shell Fe3O4@SiO2, spheres: preparation, characterization, and photocatalytic activity. J. Nanopart. Res. 17(7), 1–11 (2015)CrossRefGoogle Scholar
  54. 54.
    L. Sun, H.E. Jiang, A.N. Song, J. Zhang, J. Zheng, D. Ren, Recyclable Fe3O4@SiO2–Ag magnetic nanospheres for the rapid decolorizing of dye pollutants. Chin. J Catal. 34(7), 1378–1385 (2013)CrossRefGoogle Scholar
  55. 55.
    S.K. Lee, A. Mills, C.O. Rourke, Action spectra in semiconductor photocatalysis. Chem. Soc. Rev. 46(16), 4877–4894 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Suqing Chen
    • 1
  • Huading Liang
    • 1
  • Mao Shen
    • 1
  • Yanxian Jin
    • 1
  1. 1.College of Pharmaceutical and Chemical EngineeringTaizhou UniversityJiaojiangPeople’s Republic of China

Personalised recommendations