Advertisement

Applied Physics A

, 124:289 | Cite as

Electric-regulated enhanced in-plane uniaxial anisotropy in FeGa/PMN–PT composite using oblique pulsed laser deposition

  • Yi Zhang
  • Chaojuan Huang
  • Mutellip Turghun
  • Zhihua Duan
  • Feifei Wang
  • Wangzhou Shi
Article
  • 169 Downloads

Abstract

The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate–lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN–PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.

Notes

Acknowledgements

This work is supported by National Youth Natural Science Foundation (61601293, 61404085), Yangfan Plan of Shanghai Youth Science and Technology Talents (15YF1408800), and National Natural Science Fund (11574214).

Supplementary material

339_2018_1723_MOESM1_ESM.docx (759 kb)
Supplementary material 1 (DOCX 758 KB)

References

  1. 1.
    X. Chen, Y.G. Ma, C.K. Ong, Magnetic anisotropy and resonance frequency of patterned soft magnetic strips. J. Appl. Phys. 104, 013921 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    N.N. Phuoc, F. Xu, C.K. Ong, Ultrawideband microwave noise filter: hybrid antiferromagnet/ferromagnet exchange-coupled multilayers. Appl. Phys. Lett. 94, 092505 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    T. Osaka, M. Takai, K. Hayashi, K. Ohashi, M. Saito, K. Yamada, A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392, 796 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    O. Acher, S. Queste, M. Ledieu, K.U. Barholz, R. Mattheis, Hysteretic behavior of the dynamic permeability on a Ni–Fe thin film. Phys. Rev. B 68, 184414 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    J. Vernieres, J.F. Bobo, D. Prost, F. Issac, F. Boust, Ferromagnetic microstructured thin films with high complex permeability for microwave applications. J. Appl. Phys. 109, 07A323 (2011)CrossRefGoogle Scholar
  6. 6.
    C. Jiang, D. Xue, W. Sui, Extracting uniaxial anisotropy of ferromagnetic layer in exchange-biased system. J. Magn. Magn. Mater. 322, 3676 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Yu, Q. Zhan, J. Wei, J. Wang, G. Dai, Z. Zuo, X. Zhang, Y. Liu, H. Yang, Y. Zhang, S. Xie, B. Wang, R.-W. Li, Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl. Phys. Lett. 106, 162405 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    J.C. Li, Q.F. Zhan, S.L. Zhang, J.W. Wei, J.B. Wang, M.J. Pan, Y.L. Xie, H.L. Yang, Z. Zhou, S.H. Xie, B.M. Wang, R.W. Li, Magnetic anisotropy and high-frequency property of flexible FeCoTa films obliquely deposited on a wrinkled topography. Sci. Rep. 7, 2837 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    T.G. Knorr, R.W. Hoffman, Dependence of Geometric Magnetic Anisotropy in Thin Iron Films. Phys. Rev. 113, 1039 (1959)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Park, E.E. Fullerton, S.D. Bader, Growth-induced uniaxial in-plane magnetic anisotropy for ultrathin Fe deposited on MgO(001) by oblique-incidence molecular beam epitaxy. Appl. Phys. Lett. 66, 2140 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Zhengmei, F. Xiaolong, L. Min, G. Dangwei, C. Guozhi, X. Desheng, Optimized soft magnetic properties and high frequency characteristics of obliquely deposited Co–Zr thin films. J. Phys. D: Appl. Phys. 43, 085002 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J. Gutierrez, A. Lasheras, P. Martins, N. Pereira, J.M. Barandiaran, S. Lanceros-Mendez, Metallic glass/PVDF magnetoelectric laminates for resonant sensors and actuators: a review. Sensors 17, 1251 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Liu, O. Obi, J. Lou, Y. Chen, Z. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K.S. Ziemer, V.G. Harris, N.X. Sun, Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 19, 1826 (2009)CrossRefGoogle Scholar
  14. 14.
    N. Lei, T. Devolder, G. Agnus, P. Aubert, L. Daniel, J.-V. Kim, W. Zhao, T. Trypiniotis, R.P. Cowburn, C. Chappert, D. Ravelosona, P. Lecoeur, Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat. Commun. 4, 1378 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Staruch, D.B. Gopman, Y.L. Iunin, R.D. Shull, S.F. Cheng, K. Bussmann, P. Finkel, Reversible strain control of magnetic anisotropy in magnetoelectric heterostructures at room temperature. Sci. Rep. 6, 37429 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    L. Jiang, J. Yang, H. Hao, G. Zhang, S. Wu, Y. Chen, O. Obi, T. Fitchorov, V.G. Harris, Giant enhancement in the magnetostrictive effect of FeGa alloys doped with low levels of terbium. Appl. Phys. Lett. 102, 222409 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    D. Cao, Z. Wang, E. Feng, J. Wei, J. Wang, Q. Liu, Magnetic properties and microstructure investigation of electrodeposited FeNi/ITO films with different thickness. J. Alloy. Compd. 581, 66 (2013)CrossRefGoogle Scholar
  18. 18.
    X.J. Luo, P. Zhou, H.P. Lu, J.L. Xie, L.J. Deng, Study on ferromagnetic properties in FeCo-based amorphous thin films with different thickness. Thin Solid Films 619, 227 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    X. Zhang, Q. Zhan, G. Dai, Y. Liu, Z. Zuo, H. Yang, B. Chen, R.-W. Li, Effect of buffer layer and external stress on magnetic properties of flexible FeGa films. J. Appl. Phys. 113, 17A907 (2013)CrossRefGoogle Scholar
  20. 20.
    Z. Zuo, Q. Zhan, G. Dai, B. Chen, X. Zhang, H. Yang, Y. Liu, R.-W. Li, In-plane anisotropic converse magnetoelectric coupling effect in FeGa/polyvinylidene fluoride heterostructure films. J. Appl. Phys. 113, 17C705 (2013)CrossRefGoogle Scholar
  21. 21.
    E.C. Estrine, M. Hein, W.P. Robbins, B.J.H. Stadler, Composition and crystallinity in electrochemically deposited magnetostrictive galfenol (FeGa). J. Appl. Phys. 115, 17A918 (2014)CrossRefGoogle Scholar
  22. 22.
    R. Ranchal, S. Fin, D. Bisero, C. Aroca, Tailoring the magnetic anisotropy and domain patterns of sputtered TbFeGa alloys. J. Alloy. Compd. 582, 839 (2014)CrossRefGoogle Scholar
  23. 23.
    C.R. Rementer, K. Fitzell, Q. Xu, P. Nordeen, G.P. Carman, Y.E. Wang, J.P. Chang, Tuning static and dynamic properties of FeGa/NiFe heterostructures. Appl. Phys. Lett. 110, 242403 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    J. Peng, H. Luo, D. Lin, H. Xu, T. He, W. Jin, Orientation dependence of transverse piezoelectric properties of 0.70Pb(Mg1∕3Nb2∕3)O3 − 0.30PbTiO3 single crystals. Appl. Phys. Lett. 85, 6221 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Zhang, M. Turghun, C.J. Huang, T. Wang, F.F. Wang, W.Z. Shi, Structure and magnetic properties of magnetostrictive FeGa film on single-crystal (100) GaAs and (001) Si substrate fabricated by pulsed laser deposition. Acta Metall. Sin. (2017).  https://doi.org/10.1007/s40195-017-0686-0 Google Scholar
  26. 26.
    T. Duong Anh, Y. Shin, P. The-Long, C. Tran Viet, S. Cho, Influence of Ga content on the structure and anomalous Hall effect of Fe1−xGax thin films on GaSb(100). J. Appl. Phys. 115, 17C742 (2014)CrossRefGoogle Scholar
  27. 27.
    X. Zhu, Z. Wang, Y. Zhang, L. Xi, J. Wang, Q. Liu, Tunable resonance frequency of FeNi films by oblique sputtering. J. Magn. Magn. Mater. 324, 2899 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    D.O. Smith, M.S. Cohen, G.P. Weiss, Oblique-incidence anisotropy in evaporated permalloy films. J. Appl. Phys. 31, 1755 (1960)ADSCrossRefGoogle Scholar
  29. 29.
    J. Luo, S. Zhang, Advances in the growth and characterization of relaxor-PT-based ferroelectric single crystals. Crystals 4, 306 (2004)CrossRefGoogle Scholar
  30. 30.
    R. Zhang, B. Jiang, W. Jiang, W. Cao, Complete set of elastic, dielectric, and piezoelectric coefficents of 0.93Pb(Zn1∕3Nb2∕3)O3 − 0.07PbTiO3 single crystal poled along [011]. Appl. Phys. Lett. 89, 242908 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yi Zhang
    • 1
    • 2
  • Chaojuan Huang
    • 1
  • Mutellip Turghun
    • 1
  • Zhihua Duan
    • 2
  • Feifei Wang
    • 2
  • Wangzhou Shi
    • 2
  1. 1.Key Laboratory of Optoelectronic Material and DeviceShanghai Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Mathematics and Science CollegeShanghai Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations