Applied Physics A

, 124:293 | Cite as

SnO2 quantum dots with rapid butane detection at lower ppm-level

  • Pan Cai
  • Chengjun Dong
  • Ming Jiang
  • Yuanyuan Shen
  • You Tao
  • Yude Wang


SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).



This work was supported by the Department of Science and Technology of Yunnan Province via the Key Project for the Science and Technology (Grant No. 2017FA025), National Natural Science Foundation of China (Grant No. 61761047) and the Project of the Department of Education of Yunnan Province (Grant No. 2015Y008).


  1. 1.
    K.K. Bhargav, A. Maity, S. Ram, S.B. Majumder, Sens. Actuators B Chem. 195, 303 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Das, V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014)CrossRefGoogle Scholar
  3. 3.
    M.E. Franke, T.J. Koplin, U. Simon, Small 2, 36 (2006)CrossRefGoogle Scholar
  4. 4.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Chem. Lett. 3, 441 (1990)CrossRefGoogle Scholar
  5. 5.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens. Actuators B Chem. 3, 147 (1991)CrossRefGoogle Scholar
  6. 6.
    A. Das, V. Bonu, A.K. Prasad, D. Panda, S. Dhara, A.K. Tyagi, J. Mater. Chem. D 2, 164 (2014)Google Scholar
  7. 7.
    S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Sens. Actua. B Chem. 145, 7 (2010)CrossRefGoogle Scholar
  8. 8.
    J.P. Du, R.H. Zhao, Y.J. Xie, J.P. Li, Appl. Surf. Sci. 346, 256 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    H. Liu, W.K. Zhang, H.X. Yu, L. Gao, Z.L. Song, S.M. Xu, M. Li, Y. Wang, H.S. Song, J. Tang, ACS Appl. Mater. Interfaces 8, 840 (2016)CrossRefGoogle Scholar
  10. 10.
    R.K. Mishra, S.B. Upadhyay,k A. Kushwaha, T.H. Kim, G. Murali, R. Verma, M. Srivastava, J. Singh, P.P. Sahay, S.H. Lee, Nanoscale 7, 11971 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Y.F. He, P.G. Tang, J. Li, J.J. Zhang, F.Y. Fan, D.Q. Li, Mater. Lett. 165, 50 (2016)CrossRefGoogle Scholar
  12. 12.
    L.F. Zhu, M.Y. Wang, T.K. Lam, C.Y. Zhang, H.D. Du, B.H. Li, Y.W. Yao, Sens. Actuators B Chem. 236, 646 (2016)CrossRefGoogle Scholar
  13. 13.
    L.S. Xiao, H. Shen, R. von Hagen, J. Pan, L. Belkoura, S. Mathur, Chem. Commun. 46, 6509 (2010)CrossRefGoogle Scholar
  14. 14.
    S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Sens. Actuators B Chem. 145, 7 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Muthuvinayagam, N. Melikechi, P.D. Christy, P. Sagayaraj, Phys. B 405, 1067 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    N. Shi, W. Cheng, H. Zhou, T.X. Fan, M. Niederberger, Chem. Commun. 51, 1338 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Ferrari, L. Lutterotti, J. Appl. Phys. 76, 7246 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    C.J. Dong, X. Liu, X.C. Xiao, G. Chen, Y.D. Wang, I. Djerdj, J. Mater. Chem. A 2, 20089 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, Z.Y. Qin, D.W. Zeng, C.S. Xie, Phys. Chem. Chem. Phys. 19, 6313 (2017)CrossRefGoogle Scholar
  20. 20.
    G. Korotcenkov, Mater. Sci. Eng. R 61, 1 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Keshtkar, A. Rashidi, M. Kooti, Ceram. Int. 43, 14326 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYunnan UniversityKunmingPeople’s Republic of China
  2. 2.Key Lab of Quantum Information of Yunnan ProvinceYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations