SnO2 quantum dots with rapid butane detection at lower ppm-level
Abstract
SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).
Notes
Acknowledgements
This work was supported by the Department of Science and Technology of Yunnan Province via the Key Project for the Science and Technology (Grant No. 2017FA025), National Natural Science Foundation of China (Grant No. 61761047) and the Project of the Department of Education of Yunnan Province (Grant No. 2015Y008).
References
- 1.K.K. Bhargav, A. Maity, S. Ram, S.B. Majumder, Sens. Actuators B Chem. 195, 303 (2014)CrossRefGoogle Scholar
- 2.S. Das, V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014)CrossRefGoogle Scholar
- 3.M.E. Franke, T.J. Koplin, U. Simon, Small 2, 36 (2006)CrossRefGoogle Scholar
- 4.C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Chem. Lett. 3, 441 (1990)CrossRefGoogle Scholar
- 5.C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens. Actuators B Chem. 3, 147 (1991)CrossRefGoogle Scholar
- 6.A. Das, V. Bonu, A.K. Prasad, D. Panda, S. Dhara, A.K. Tyagi, J. Mater. Chem. D 2, 164 (2014)Google Scholar
- 7.S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Sens. Actua. B Chem. 145, 7 (2010)CrossRefGoogle Scholar
- 8.J.P. Du, R.H. Zhao, Y.J. Xie, J.P. Li, Appl. Surf. Sci. 346, 256 (2015)ADSCrossRefGoogle Scholar
- 9.H. Liu, W.K. Zhang, H.X. Yu, L. Gao, Z.L. Song, S.M. Xu, M. Li, Y. Wang, H.S. Song, J. Tang, ACS Appl. Mater. Interfaces 8, 840 (2016)CrossRefGoogle Scholar
- 10.R.K. Mishra, S.B. Upadhyay,k A. Kushwaha, T.H. Kim, G. Murali, R. Verma, M. Srivastava, J. Singh, P.P. Sahay, S.H. Lee, Nanoscale 7, 11971 (2015)ADSCrossRefGoogle Scholar
- 11.Y.F. He, P.G. Tang, J. Li, J.J. Zhang, F.Y. Fan, D.Q. Li, Mater. Lett. 165, 50 (2016)CrossRefGoogle Scholar
- 12.L.F. Zhu, M.Y. Wang, T.K. Lam, C.Y. Zhang, H.D. Du, B.H. Li, Y.W. Yao, Sens. Actuators B Chem. 236, 646 (2016)CrossRefGoogle Scholar
- 13.L.S. Xiao, H. Shen, R. von Hagen, J. Pan, L. Belkoura, S. Mathur, Chem. Commun. 46, 6509 (2010)CrossRefGoogle Scholar
- 14.S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Sens. Actuators B Chem. 145, 7 (2010)CrossRefGoogle Scholar
- 15.A. Muthuvinayagam, N. Melikechi, P.D. Christy, P. Sagayaraj, Phys. B 405, 1067 (2010)ADSCrossRefGoogle Scholar
- 16.N. Shi, W. Cheng, H. Zhou, T.X. Fan, M. Niederberger, Chem. Commun. 51, 1338 (2015)CrossRefGoogle Scholar
- 17.M. Ferrari, L. Lutterotti, J. Appl. Phys. 76, 7246 (1994)ADSCrossRefGoogle Scholar
- 18.C.J. Dong, X. Liu, X.C. Xiao, G. Chen, Y.D. Wang, I. Djerdj, J. Mater. Chem. A 2, 20089 (2014)CrossRefGoogle Scholar
- 19.J. Zhang, Z.Y. Qin, D.W. Zeng, C.S. Xie, Phys. Chem. Chem. Phys. 19, 6313 (2017)CrossRefGoogle Scholar
- 20.G. Korotcenkov, Mater. Sci. Eng. R 61, 1 (2008)CrossRefGoogle Scholar
- 21.S. Keshtkar, A. Rashidi, M. Kooti, Ceram. Int. 43, 14326 (2017)CrossRefGoogle Scholar