Skip to main content
Log in

Structural and optical properties of Fe/Ni:ZnO nanoparticles: experimental and DFT studies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, Fe/Ni-doped ZnO nanoparticles (i.e., Zn0.90Fe0.10O, Zn0.95Fe0.05O; Zn0.90Ni0.05Fe0.05O and Zn0.85Ni0.05Fe0.10O) were successfully synthesized by the sol–gel technique. Fe/Ni-doped ZnO samples were characterized by X-ray diffraction, scanning electron microscopy, UV–Visible and IR spectroscopy. Structural, spectroscopic and optical properties of these Fe/Ni-doped ZnO nanoparticles were examined as a function of Fe and Ni concentrations. The X-ray diffraction analysis of doped samples confirms the formation of a hexagonal wurtzite structure. In addition, the FTIR spectra of the metal oxide nanoparticles confirm the ZnO nanoparticles. The surface morphological study was made with the help of scanning electron microscope (SEM) and the optical study was studied with the help of UV–Visible spectroscopy (UV–Vis.). The optical band gap, Eg of the diluted magnetic semiconductors was determined from the absorption spectra. The measured values of the band gap energy were found to be 2.88–3.04 eV. In addition, these nanoparticles were modeled as a cluster by density functional theory (DFT) calculations. In this theoretical study, the Zn i O i , Fe-doped Zni1O i and Fe- and Ni-doped Zni2O i clusters (i = 6 and 10) were optimized as a wurtzite crystal structure by B3LYP/lanl2dz level. The spin states, structural parameters and the theoretical band gaps of all clusters were performed at same level. The HOMO and LUMO orbitals were visualized by GaussView.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U. Ozgur, Y.L. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  2. N.S. Norberg, K.R. Kittistved, J.E. Amonette, R.K. Kukkadapu, D.A. Schwartz, R. Gamelin, J. Am. Chem. Soc. 126, 9387 (2004)

    Article  Google Scholar 

  3. M.A. Garcia, J.M. Merino, E.F. Pinel, A. Quesada, J.D. Venta, Nano Lett. 7, 1489 (2007)

    Article  ADS  Google Scholar 

  4. H.M. Xiong, D.G. Shchukin, H. Möhwald, Y. Xu, Y.Y. Xia, Chem. Int. Ed. 48, 2727 (2009)

    Article  Google Scholar 

  5. Y.S. Wang, P.J. Thomas, P.O. Brien, J. Phys. Chem. B 110, 21412 (2006)

    Article  Google Scholar 

  6. J. Nayak, S. Kimura, S. Nozaki, H. Ono, K. Uchida, Superlattice. Microst. 42, 438 (2007). c

    Article  ADS  Google Scholar 

  7. H. Ohno, F. Matsukura, Y. Ohno, JSAP Int. 5, 4 (2002)

    Google Scholar 

  8. H.B. Zeng, W.P. Cai, P.S. Liu, X.X. Xu, H.J. Zhou, C. Klingshrin, H. Kalt, ACS Nano. 2, 1661 (2008)

    Article  Google Scholar 

  9. H.B. Zeng, X.J. Xu, Y. Bando, U.K. Gautam, T.Y. Zhai, X.S. Fang, B.D. Liu, D. Golberg, Adv. Funct. Mater. 19, 3165 (2009)

    Article  Google Scholar 

  10. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  11. P. Srivastava, Y. Sharma, Adv. Mat. Lett. 2, 290 (2011)

    Article  Google Scholar 

  12. Q. Fan, J. Yang, Y. Yu, J. Zhang, J. Cao, Chem. Eng. Trans. 46, 985 (2015)

    Google Scholar 

  13. C.E. Szakacs, E.F. Merschrod S. and K.M. Poduska, Computation 1, 16 (2013)

    Article  Google Scholar 

  14. W. Kohn, L. Shamn, J. Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  15. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  16. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, (Gaussian Inc., Wallingford, 2009)

    Google Scholar 

  17. J.M. Matxain, J.E. Fowler, Phys. Rev. A 62, 053201 (2000)

    Article  ADS  Google Scholar 

  18. J. Muscat, A. Wander, N.M. Harrison, Chem. Phys. Lett. 342, 397 (2001)

    Article  ADS  Google Scholar 

  19. R. Dennington, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R. Gilliland, GaussView, Version 3.07. (Semichem Inc., Shawnee Mission, 2003)

    Google Scholar 

  20. A.A. Ashkarran, A. Irajizad, S.M. Mahdavi, M.M. Ahadian, Mater. Chem. Phys. 118, 6 (2009)

    Article  Google Scholar 

  21. R.M. Alwan, Q.A. Kadhim, KassimM. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kasssim, A.N. Jassim, Nanoscience and Nanotech. 5, 1 (2015)

    Google Scholar 

  22. D.M. Yufanyi, A.M. Ondoh, J. Foba-Tendo, K.J. Mbadcam, Am. J. Chem. 5, 1 (2015)

    Article  Google Scholar 

  23. A. Rahdar, M. Aliahmad, Y. Azizi, J Nanostrc. 5, 145 (2015)

    Google Scholar 

  24. J. Tauc,Optical Properties of Solids (Academic Press Inc, New York, 1966)

    Google Scholar 

  25. K.H. Seong, A.B. Du, K.J. Hoon, K.G. Hee, L.S. Hoon, C.H. Woo, L.S. Yeol, Appl. Phys. Lett. 88, 202108 (2006)

    Article  Google Scholar 

  26. K.J. Kim, Y.R. Park, Appl. Phys. Lett. 81, 1420 (2001)

    Article  ADS  Google Scholar 

  27. C.F. Klingshirn, B.K. Meyer, A. Waag, H. Axel, M.M.G. Johannes, Zinc Oxide (Springer, New York, 2010)

    Book  Google Scholar 

  28. N. Ozbek, S. Alyar, B. Koçak Memmi, A. Balaban, Z. Gündüzalp, H. Bahçeci, Alyar, J. Mol. Struct. 1127, 437 (2017)

    Article  ADS  Google Scholar 

  29. D.F.V. Lewis, C. Loannides, D.V. Parke, Xenobiotica 24, 401 (1994)

    Article  Google Scholar 

  30. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is a part of a research Projects OUAP (F)-2013/14 and KUAP (F)-2013/25. We thank Uludag University for the financial support given to the projects. The authors would like to acknowledge Dr. Yunus Kaya for their kind help in experimental and theoretical procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asli A. Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, A.A., Erturk, K. Structural and optical properties of Fe/Ni:ZnO nanoparticles: experimental and DFT studies. Appl. Phys. A 124, 346 (2018). https://doi.org/10.1007/s00339-018-1718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1718-y

Navigation