Skip to main content
Log in

Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

M-type barium hexaferrite ceramics have emerged as important materials both for technological and commercial applications. However, limited work has been reported regarding the investigation of nanocrystalline Ni-doped barium hexaferrites. In this study, nanocrystalline barium hexaferrite ceramics with the composition BaFe12−xNi x O19 (where x = 0, 0.3 and 0.5) were synthesized by sol–gel method and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and precision impedance analyzer. All the synthesized samples had single magnetoplumbite phase having space group P63/mmc showing the successful substitution of Ni in BaFe12O19 without the formation of any impurity phase. Average grain size of undoped samples was around 120 nm which increased slightly with the addition of Ni. Saturation magnetization (Ms) and remnant magnetization (Mr) increased with the addition of Ni, however, coercivity (Hc) decreased with the increase in Ni from x = 0 to x = 0.5. Real and imaginary parts of permittivity decreased with the increasing frequency and increased with Ni content. Dielectric loss and conductivity showed slight variation with the increase in Ni concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Kaur et al., Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A 119(4), 1531–1540 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Li et al., Phase formation, magnetic properties and Raman spectra of Co–Ti co-substitution M-type barium ferrites. Appl. Phys. A 119(2), 525–532 (2015)

    Article  ADS  Google Scholar 

  3. V.N. Dhage et al., Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys. B 406(4), 789–793 (2011)

    Article  ADS  Google Scholar 

  4. Chavan, V.C., et al., Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19. J. Magnet. Magnet. Mater.. 398, 32–37 (2016)

    Article  ADS  Google Scholar 

  5. V.N. Dhage et al., Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol–gel auto combustion method. J. Alloy. Compd. 509(12), 4394–4398 (2011)

    Article  Google Scholar 

  6. Z. Zhang et al., Effect of Nd–Co substitution on magnetic and microwave absorption properties of SrFe 12O19 hexaferrites. J. Alloy. Compd. 525, 114–119 (2012)

    Article  Google Scholar 

  7. X. Niu et al., Effects of presintering temperature on structural and magnetic properties of BaMg1.8Cu0.2Fe16O27 hexagonal ferrites. Optics 126(24), 5513–5516 (2015)

    ADS  Google Scholar 

  8. M.A. Rafiq et al., Effect of Ni2+ substitution on the structural, magnetic, and dielectric properties of barium hexagonal ferrites (BaFe 12 O 19). J. Electron. Mater. 46(1), 241–246 (2017)

    Article  ADS  Google Scholar 

  9. Z. Mosleh et al., Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)

    Article  ADS  Google Scholar 

  10. L. Wang et al., XAFS and XPS studies on site occupation of Sm3+ ions in Sm doped M-type BaFe12O19. J. Magn. Magn. Mater. 377, 362–367 (2015)

    Article  ADS  Google Scholar 

  11. M.H. Shams et al., Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite. J. Magn. Magn. Mater. 399, 10–18 (2016)

    Article  ADS  Google Scholar 

  12. G.M. Rai, M. Iqbal, K. Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J. Alloy. Compd. 495(1), 229–233 (2010)

    Article  Google Scholar 

  13. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57(7), 1191–1334 (2012)

    Article  Google Scholar 

  14. J. Smit, H.P.J. Wijn, Ferrites. Philips Technical Library, Eindhoven, 1959

    Google Scholar 

  15. M.J. Iqbal, S. Farooq, Suitability of Sr0.5Ba0.5–xCexFe12–yNiyO19 co-precipitated nanomaterials for inductor applications. J. Alloys Compd. 493(1–2), 595–600 (2010)

    Article  Google Scholar 

  16. C.-J. Li, B. Wang, J.-N. Wang, Magnetic and microwave absorbing properties of electrospun Ba(1– x)LaxFe12O19 nanofibers. J. Magn. Magn. Mater. 324(7), 1305–1311 (2012)

    Article  ADS  Google Scholar 

  17. I. Bsoul, S. Mahmood, Magnetic and structural properties of BaFe12–xGaxO19 nanoparticles. J. Alloy. Compd. 489(1), 110–114 (2010)

    Article  Google Scholar 

  18. S. Singhal, A. Garg, K. Chandra, Evolution of the magnetic properties during the thermal treatment of nanosize BaMFe11O19 (M = Fe, Co, Ni and Al) obtained through aerosol route. J. Magn. Magn. Mater. 285(1), 193–198 (2005)

    Article  ADS  Google Scholar 

  19. V. Sankaranarayanan, D. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method. J. Magnet. Magnet. Mater. 153(3), 337–346 (1996)

    Article  ADS  Google Scholar 

  20. X. Liu et al., An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. 184(3), 344–354 (1998)

    Article  ADS  Google Scholar 

  21. L. Rezlescu et al., Fine barium hexaferrite powder prepared by the crystallisation of glass. J. Magn. Magn. Mater. 193(1), 288–290 (1999)

    Article  ADS  Google Scholar 

  22. A. Ataie, S. Heshmati-Manesh, Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method. J. Eur. Ceram. Soc. 21(10), 1951–1955 (2001)

    Article  Google Scholar 

  23. M. Iqbal, A. Mir, S. Alam, Synthesis and characterizations of nano-sized barium hexa ferrites using sol-gel methods. une 13, 15 (2016)

    Google Scholar 

  24. A. Mali, A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route. Scripta Mater. 53(9), 1065–1070 (2005)

    Article  Google Scholar 

  25. D. Chen et al., Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method. J. Magn. Magn. Mater. 395, 350–353 (2015)

    Article  ADS  Google Scholar 

  26. H. Sözeri et al., Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M = Mn2+, Co2+, Cu2+, Ni2+, Zn2+). Ceram. Int. 40(6), 8645–8657 (2014)

    Article  Google Scholar 

  27. M.V. Rane et al., Magnetic properties of NiZr substituted barium ferrite. J. Magn. Magn. Mater. 195(2), L256–L260 (1999)

    Article  ADS  Google Scholar 

  28. D. Mishra et al., Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation–calcination route. Mater. Chem. Phys. 86(1), 132–136 (2004)

    Article  Google Scholar 

  29. L. Junliang et al., Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol–gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions (CA/M). J. Alloy. Compd. 479(1), 863–869 (2009)

    Article  Google Scholar 

  30. A. Gonzalez-Angeles et al., Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling. J. Magn. Magn. Mater. 270(1), 77–83 (2004)

    Article  ADS  Google Scholar 

  31. P. Meng et al., Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1– xTiFe10O19. J. Alloy. Compd. 628, 75–80 (2015)

    Article  Google Scholar 

  32. D. Vinnik et al., Growth, structural and magnetic characterization of Co-and Ni-substituted barium hexaferrite single crystals. J. Alloy. Compd. 628, 480–484 (2015)

    Article  Google Scholar 

  33. Q.K. Muhammad et al., Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 1–11 (2016)

  34. A. Kamal et al., Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics. Appl. Phys. A 122, 1037 (2016)

    Article  ADS  Google Scholar 

  35. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)

    Article  ADS  Google Scholar 

  36. P.P. Naik et al., Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater. Chem. Phys. (2017)

  37. R.S. Alam et al., Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)

    Article  ADS  Google Scholar 

  38. M. Rasly, M.M. Rashad, Structural and magnetic properties of Sn–Zn doped BaCoZ-type hexaferrite powders prepared by citrate precursor method. J. Magn. Magn. Mater. 337–338, 58–64 (2013)

    Article  Google Scholar 

  39. I. Coondoo et al., Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3. [R = La, Nd] ceramics. Ceram. Int. 40(7), 9895–9902 (2014)

    Article  Google Scholar 

  40. M.V. Rane et al., Mössbauer and FT-IR studies on non-stoichiometric barium hexaferrites. J. Magn. Magn. Mater. 192(2), 288–296 (1999)

    Article  ADS  Google Scholar 

  41. A.K. Singh et al., Dielectric properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 91(10), 6626–6629 (2002)

    Article  ADS  Google Scholar 

  42. M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41(9), 11436–11444 (2015)

    Article  Google Scholar 

  43. I. Soibam, S. Phanjoubam, L. Radhapiyari, Dielectric properties of Ni substituted Li–Zn ferrites. Phys. B 405(9), 2181–2184 (2010)

    Article  ADS  Google Scholar 

  44. M.A. Rafiq et al., Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 17(37), 24403–24411 (2015)

    Article  Google Scholar 

  45. M.A. Rafiq et al., Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst. Growth Des. 15(3), 1289–1294 (2015)

    Article  MathSciNet  Google Scholar 

  46. V.V. Soman et al., Effect of substitution of Zn-Ti on magnetic and dielectric properties of BaFe12O19. Phys. Proc. 54, 30–37 (2014)

    Article  ADS  Google Scholar 

  47. S. El-Sayed et al., Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys. B 426, 137–143 (2013)

    Article  ADS  Google Scholar 

  48. V.V. Soman, V. Nanoti, D. Kulkarni, Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram. Int. 39(5), 5713–5723 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Rafiq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqar, M., Rafiq, M.A., Mirza, T.A. et al. Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials. Appl. Phys. A 124, 286 (2018). https://doi.org/10.1007/s00339-018-1717-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1717-z

Navigation