Applied Physics A

, 124:308 | Cite as

Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr

  • A. Abou-Saleh
  • E. T. Karim
  • C. Maurice
  • S. Reynaud
  • F. Pigeon
  • F. Garrelie
  • L. V. Zhigilei
  • J. P. Colombier


Interaction of ultrafast laser pulses with metal surfaces in the spallation regime can result in the formation of anisotropic nanoscale surface morphology commonly referred to as laser-induced periodic surface structures (LIPSS) or ripples. The surface structures generated by a single pulse irradiation of monocrystalline Cr samples are investigated experimentally and computationally for laser fluences that produce high spatial frequency nanostructures in the multi-pulse irradiation regime. Electron microscopy reveals distinct response of samples with different crystallographic surface orientations, with (100) surfaces exhibiting the formation of more refined nanostructure by a single pulse irradiation and a more pronounced LIPSS after two laser pulses as compared to (110) surfaces. A large-scale molecular dynamics simulation of laser interaction with a (100) Cr target provides detailed information on processes responsible for spallation of a liquid layer, redistribution of molten material, and rapid resolidification of the target. The nanoscale roughness of the resolidified surface predicted in the simulation features elongated frozen nanospikes, nanorims and nanocavities with dimensions and surface density similar to those in the surface morphology observed for (100) Cr target with atomic force microscopy. The results of the simulation suggest that the types, sizes and dimensions of the nanoscale surface features are defined by the competition between the evolution of transient liquid structures generated in the spallation process and the rapid resolidification of the surface region of the target. The spallation-induced roughness is likely to play a key role in triggering the generation of high-frequency LIPSS upon irradiation by multiple laser pulses.



This work was supported by the LABEX MANUTECH-SISE (ANR-10-LABX-0075) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). Financial support for the computational part of this work was provided by the National Science Foundation (NSF) through Grant DMR-1610936. Computational support was provided by the NSF through the Extreme Science and Engineering Discovery Environment (project TGDMR110090) and the Oak Ridge Leadership Computing Facility (INCITE project MAT130).


  1. 1.
    A. Cunha, A.P. Serro, V. Oliveira, A. Almeida, R. Vilar, M.-C. Durrieu, Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces. Appl. Surf. Sci. 265, 688 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    F.F. Dave, C. Hae Woon, Z. Burr, K.S. Jeremy, J.C. Jeffery, V.O. Susan, L.J. Lee, Femtosecond laser micromachining of dielectric materials for biomedical applications. J. Micromech. Microeng. 18, 035020 (2008)CrossRefGoogle Scholar
  3. 3.
    J. Krüger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, F. Krausz, Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps. Appl. Surf. Sci. 127–129, 892 (1998)CrossRefGoogle Scholar
  4. 4.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14, 2716 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, R. Fortunier, Comparison of heat affected zone due to nanosecond and femtosecond laser pulses using transmission electronic microscopy. Appl. Phys. Lett. 80, 3886 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    V. Margetic, K. Niemax, R. Hergenröder, Application of femtosecond laser ablation time-of-flight mass spectrometry to in-depth multilayer analysis. Anal. Chem. 75, 3435 (2003)CrossRefGoogle Scholar
  7. 7.
    M.J. Abere, M. Zhong, J. Krüger, J. Bonse, Ultrafast laser-induced morphological transformations. MRS Bull. 41, 969 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Buividas, M. Mikutis, S. Juodkazis, Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog. Quantum Electron. 38, 119 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    L. Romoli, C.A.A. Rashed, G. Lovicu, G. Dini, F. Tantussi, F. Fuso, M. Fiaschi, Ultrashort pulsed laser drilling and surface structuring of microholes in stainless steels. CIRP Ann. Manuf. Technol. 63, 229 (2014)CrossRefGoogle Scholar
  10. 10.
    R.V. Volkov, D.M. Golishnikov, V.M. Gordienko, A.B. Savel’ev, Overheated plasma at the surface of a target with a periodic structure induced by femtosecond laser radiation. JETP Lett. 77, 473 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    A.Y. Vorobyev, V.S. Makin, C. Guo, Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources. Phys. Rev. Lett. 102, 234301 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    O. Raimbault, S. Benayoun, K. Anselme, C. Mauclair, T. Bourgade, A.M. Kietzig, P.L. Girard-Lauriault, S. Valette, C. Donnet, The effects of femtosecond laser-textured Ti–6Al–4V on wettability and cell response. Mater. Sci. Eng. C 69, 311 (2016)CrossRefGoogle Scholar
  13. 13.
    M.S. Ahsan, F. Ahmed, Y.G. Kim, M.S. Lee, M.B.G. Jun, Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl. Surf. Sci. 257, 7771 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    B. Dusser, Z. Sagan, H. Soder, N. Faure, J.P. Colombier, M. Jourlin, E. Audouard, Controlled nanostructures formation by ultra fast laser pulses for color marking. Opt. Express 18, 2913 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Ionin, S.I. Kudryashov, S.V. Makarov, L.V. Seleznev, D.V. Sinitsyn, E.V. Golosov, O.A. Golosova, Y.R. Kolobov, A.E. Ligachev, Femtosecond laser color marking of metal and semiconductor surfaces. Appl. Phys. A 107, 301 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    G. Li, J. Li, Y. Hu, C. Zhang, X. Li, J. Chu, W. Huang, Femtosecond laser color marking stainless steel surface with different wavelengths. Appl. Phys. A 118, 1189 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A.V. Gopal, V.A. Trofimov, T.M. Lysak, Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl. Surf. Sci. 258, 7625 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Bush, B.K. Nayak, L.S. Nair, M.C. Gupta, C.T. Laurencin, Improved bio-implant using ultrafast laser induced self-assembled nanotexture in titanium. J. Biomed. Mater. Res. B 97 B, 299 (2011)CrossRefGoogle Scholar
  19. 19.
    A. Cunha, A.-M. Elie, L. Plawinski, A.P. Serro, A.M. Botelho do Rego, A. Almeida, M.C. Urdaci, M.-C. Durrieu, R. Vilar, Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl. Surf. Sci. 360, 485 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    V. Dumas, A. Guignandon, L. Vico, C. Mauclair, X. Zapata, M.T. Linossier, W. Bouleftour, J. Granier, S. Peyroche, J.C. Dumas, H. Zahouani, A. Rattner, Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomed. Mater. 10, 055002 (2015)CrossRefGoogle Scholar
  21. 21.
    J.J. Yu, Y.F. Lu, Laser-induced ripple structures on Ni–P substrates. Appl. Surf. Sci. 148, 248 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    N. Yasumaru, K. Miyazaki, J. Kiuchi, E. Sentoku, Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring. Diam. Relat. Mater. 20, 542 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    N. Yasumaru, K. Miyazaki, J. Kiuchi, Frictional properties of diamond-like carbon, glassy carbon and nitrides with femtosecond-laser-induced nanostructure. Appl. Surf. Sci. 254, 2364 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    M. Pfeiffer, A. Engel, H. Gruettner, K. Guenther, F. Marquardt, G. Reisse, S. Weissmantel, Ripple formation in various metals and super-hard tetrahedral amorphous carbon films in consequence of femtosecond laser irradiation. Appl. Phys. A 110, 655 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, K. Miyazaki, Friction properties of the DLC film with periodic structures in nano-scale. Tribol. Online 1, 44 (2006)CrossRefGoogle Scholar
  26. 26.
    E. Rebollar, M. Castillejo, T.A. Ezquerra, Laser induced periodic surface structures on polymer films: from fundamentals to applications. Eur. Polym. J. 73, 162 (2015)CrossRefGoogle Scholar
  27. 27.
    H.W. Chang, Y.C. Tsai, C.W. Cheng, C.Y. Lin, Y.W. Lin, T.M. Wu, Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering. J. Colloid Interface Sci. 360, 305 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    R. Buividas, P.R. Stoddart, S. Juodkazis, Laser fabricated ripple substrates for surface-enhanced Raman scattering. Ann. Phys. 524, L5 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J.E. Sipe, J.F. Young, J.S. Preston, H.M. Van Driel, Laser-induced periodic surface structure. Phys. Rev. B 27, 1141 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, S. Sakabe, Crystal structures on a copper thin film with a surface of periodic self-organized nanostructures induced by femtosecond laser pulses. Phys. Rev. B 83, 235413 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J. Reif, F. Costache, O. Varlamova, G. Jia, M. Ratzke, Self-organized regular surface patterning by pulsed laser ablation. Phys. Status Solidi 6, 681 (2009)CrossRefGoogle Scholar
  32. 32.
    C. Xie, X. Li, K. Liu, M. Zhu, R. Qiu, Q. Zhou, Direct writing of sub-wavelength ripples on silicon using femtosecond laser at high repetition rate. Appl. Surf. Sci. 360, 896 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, J. Bonse, Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics. Appl. Surf. Sci. 374, 331 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    J. Cui, A. Nogales, T.A. Ezquerra, E. Rebollar, Influence of substrate and film thickness on polymer LIPSS formation. Appl. Surf. Sci. 394, 125 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    M.H. Dar, R. Kuladeep, V. Saikiran, N.D. Rao, Femtosecond laser nanostructuring of titanium metal towards fabrication of low-reflective surfaces over broad wavelength range. Appl. Surf. Sci. 371, 479 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, F. Stracke, Formation of periodic nanoripples on silicon and germanium induced by femtosecond laser pulses. Phys. Procedia 12, 29 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    X.-F. Li, C.-Y. Zhang, H. Li, Q.-F. Dai, S. Lan, S.-L. Tie, Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses. Opt. Express 22, 28086 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    L.T. Cangueiro, A.J. Cavaleiro, J. Morgiel, R. Vilar, Mechanisms of the formation of low spatial frequency LIPSS on Ni/Ti reactive multilayers. J. Phys. D. 49, 36 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Sakabe, M. Hashida, S. Tokita, S. Namba, K. Okamuro, Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys. Rev. B 79, 033409 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    G.D. Tsibidis, C. Fotakis, E. Stratakis, From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys. Rev. B 92, 041405 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    X. Sedao, M.V. Shugaev, C. Wu, T. Douillard, C. Esnouf, C. Maurice, S. Reynaud, F. Pigeon, F. Garrelie, L.V. Zhigilei, J.-P. Colombier, Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano 10, 6995 (2016)CrossRefGoogle Scholar
  42. 42.
    X. Sedao, C. Maurice, F. Garrelie, J.-P. Colombier, S. Reynaud, R. Quey, F. Pigeon, Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation. Appl. Phys. Lett. 104, 171605 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    X. Sedao, C. Maurice, F. Garrelie, J.P. Colombier, S. Reynaud, R. Quey, G. Blanc, F. Pigeon, Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface. Appl. Surf. Sci. 302, 114 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    X. Sedao, A. Abou Saleh, A. Rudenko, T. Douillard, C. Esnouf, S. Reynaud, C. Maurice, F. Pigeon, F. Garrelie, J.P. Colombier, Self-arranged periodic nanovoids by ultrafast laser-induced near-field enhancement. ACS Photonics (2018). Google Scholar
  45. 45.
    S.V. Kirner, T. Wirth, H. Sturm, J. Krüger, J. Bonse, Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium. J. Appl. Phys. 122, 104901 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Photomechanical spallation of molecular and metal targets: molecular dynamics study. Appl. Phys. A 79, 1643 (2004)ADSGoogle Scholar
  47. 47.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113, 11892 (2009)CrossRefGoogle Scholar
  48. 48.
    G. Paltauf, P.E. Dyer, Photomechanical processes and effects in ablation. Chem. Rev. 103, 487 (2003)CrossRefGoogle Scholar
  49. 49.
    C. Wu, L.V. Zhigilei, Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 114, 11 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    C. Wu, L.V. Zhigilei, Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse. J. Phys. Chem. C 120, 4438 (2016)CrossRefGoogle Scholar
  51. 51.
    D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    E.T. Karim, Z. Lin, L.V. Zhigilei, Molecular dynamics study of femtosecond laser interactions with Cr targets. In: AIP Conference Proceedings. vol. 1464, p. 280, (2012)Google Scholar
  53. 53.
    Z. Lin, R.A. Johnson, L.V. Zhigilei, Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses. Phys. Rev. B 77, 214108 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    L.V. Zhigilei, B.J. Garrison, Pressure waves in microscopic simulations of laser ablation. In: Materials Research Society Symposia Proceedings, vol. 538, p. 491 (1999)Google Scholar
  55. 55.
    L.V. Zhigilei, B.J. Garrison, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J. Appl. Phys. 88, 1281 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, 1997)Google Scholar
  57. 57.
    H. Zhang, J.P. Colombier, C. Li, N. Faure, G. Cheng, R. Stoian, Coherence in ultrafast laser-induced periodic surface structures. Phys. Rev. B 92, 17 (2015)Google Scholar
  58. 58.
    J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7, 196 (1982)ADSCrossRefGoogle Scholar
  59. 59.
    E. Bevillon, R. Stoian, J.P. Colombier, submitted, (2018)Google Scholar
  60. 60.
    A. Rudenko, J.-P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, T.E. Itina, Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci. Rep. 7, (2017)Google Scholar
  61. 61.
    B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Ablation and spallation of gold films irradiated by ultrashort laser pulses. Phys. Rev. B 82, 064113 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    P. Lorazo, L.J. Lewis, M. Meunier, Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys. Rev. B 73, 134108 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    H.Y. Lai, P.H. Huang, Laser-irradiated thermodynamic behaviors of spallation and recombination at solid-state interface. Appl. Surf. Sci. 254, 3067 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, A.M. Oparin, Y.V. Petrov, Destruction of a solid film under the action of ultrashort laser pulse. JETP Lett. 77, 606 (2003)ADSCrossRefGoogle Scholar
  65. 65.
    Z. Lin, E. Leveugle, E.M. Bringa, L.V. Zhigilei, Molecular dynamics simulation of laser melting of nanocrystalline Au. J. Phys. Chem. C 114, 5686 (2010)CrossRefGoogle Scholar
  66. 66.
    S.N. Luo, T.J. Ahrens, T. Çağın, A. Strachan, W.A. Goddard, D.C. Swift, Maximum superheating and undercooling: systematics, molecular dynamics simulations, and dynamic experiments. Phys. Rev. B 68, 134206 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    M.V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D.S. Ivanov, T.J.Y. Derrien, N.M. Bulgakova, W. Kautek, B. Rethfeld, L.V. Zhigilei, Fundamentals of ultrafast laser-material interaction. MRS Bull. 41, 960 (2016)CrossRefGoogle Scholar
  68. 68.
    A.Y. Vorobyev, C. Guo, Femtosecond laser nanostructuring of metals. Opt. Express 14, 2164 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    J. Vincenc Oboňa, V. Ocelík, J.C. Rao, J.Z.P. Skolski, G.R.B.E. Römer, A.J. Huis In’T Veld, J.T.M.D. Hosson, Modification of Cu surface with picosecond laser pulses. Appl. Surf. Sci. 303, 118 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    A.Y. Vorobyev, C. Guo, Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys. Rev. B 72, 195422 (2005)ADSCrossRefGoogle Scholar
  71. 71.
    Y. Dai, M. He, H. Bian, B. Lu, X. Yan, G. Ma, Femtosecond laser nanostructuring of silver film. Appl. Phys. A 106, 567 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    Q.-Z. Zhao, S. Malzer, L.-J. Wang, Self-organized tungsten nanospikes grown on subwavelength ripples induced by femtosecond laser pulses. Opt. Express 15, 15741 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    Y. Ashkenazy, R.S. Averback, Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals. Acta Mater. 58, 524 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert-Curien UMR5516Saint-ÉtienneFrance
  2. 2.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA
  4. 4.Laboratoire Georges Friedel, CNRS, UMR 5307, Ecole Nationale Supérieure des Mines de Saint-EtienneSaint-ÉtienneFrance

Personalised recommendations