Skip to main content
Log in

Effects of pulse durations and environments on femtosecond laser ablation of stainless steel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The influence of pulse durations (35fs and 260 fs) and environments (air and vacuum) on the laser-induced damage thresholds (LIDTs) and ablation rates of 304 stainless steel were studied. Two distinct ablation regimes were obtained from the ablation rate curves. At low fluence regime, the ablation rates were similar in spite of the differences of pulse durations and experiment environments. At high fluence regime, the ablation rates of 35 fs pulse duration in vacuum were obviously higher than others. The ablation craters showed smooth edges, moth-eye such as structures, and laser-induced periodic surface structures (LIPSSs). At a fixed fluence, the periods of LIPSSs decreased monotonously in their mean spatial period between ~ 700 nm (5 pulses) and 540 nm (200 pulses) with the increase of pulse numbers in air with 35 fs pulse duration. The formation mechanisms of moth-eye like structures and LIPSSs were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D.K. Kesim, Ö Akçaalan, S. Yavaş, M.D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, F. Ilday, Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–89 (2016)

    Article  ADS  Google Scholar 

  2. Z.G. Ou, M. Huang, F.L. Zhao, The fluence threshold of femtosecond laser blackening of metals: the effect of laser-induced ripples. Opt. Laser Technol. 79, 79–87 (2016)

    Article  ADS  Google Scholar 

  3. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Laser ablation of iron: a comparison between femtosecond and picosecond laser pulses. J. Appl. Phys. 114, 083110 (2013)

    Article  ADS  Google Scholar 

  4. C.S.R. Nathala, A. Ajami, W. Husinsky, B. Farooq, S.I. Kudryashov, A. Daskalova, I. Bliznakova, A. Assion, Ultrashort laser pulse ablation of copper, silicon and gelatin: effect of the pulse duration on the ablation thresholds and the incubation coefficients. Appl. Phys. A 122, 107 (2016)

    Article  ADS  Google Scholar 

  5. C. Liang, B. Li, H. Wang, B. Li, J. Yang, L. Zhou, H. Li, X. Wang, Ch Li, Preparation of hydrophobic and oleophilic surface of 316 L stainless steel by femtosecond laser irradiation in Water. J. Dispers. Sci. Technol. 35, 1345–1350 (2014)

    Article  Google Scholar 

  6. A.E. Wynne, B.C. Stuart, Rate dependence of short-pulse laser ablation of metals in air and vacuum. Appl. Phys. A 76, 373–378 (2003)

    Article  ADS  Google Scholar 

  7. M. Pfeiffer, A. Engel, G. Reisse, S. Weissmantel, Microstructuring of fused silica using femtosecond laser pulses of various wavelengths. Appl. Phys. A 121, 689–693 (2015)

    Article  ADS  Google Scholar 

  8. S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, Femtosecond laser ablation of nickel in vacuum. J. Phys. D: Appl. Phys. 40, 331 (2007)

    Article  ADS  Google Scholar 

  9. S. Bruening, G. Hennig, S. Eifel, A. Gillner, Ultrafast scan techniques for 3D-µm structuring of metal surfaces with high repetitive ps-laser pulses. Phys. Procedia 12, 105–115 (2011)

    Article  ADS  Google Scholar 

  10. Q. Wang, A. Chen, S. Li, H. Qi, Y. Qi, Z. Hu, M. Jin, Influence of ambient pressure on the ablation hole in femtosecond laser drilling Cu. Appl. Opt. 54, 8235–8240 (2015)

    Article  ADS  Google Scholar 

  11. Z.Q. Cui, Y.Q. Li, W.X. Wang, C. Lin, B.S. Xu, Effect of environmental media on ablation rate of stainless steel under femtosecond laser multiple raster scans. Chin. Opt. Lett 13(1), 011402 (2015)

    Article  ADS  Google Scholar 

  12. S.Z. Xu, C.Z. Yao, H.Q. Dou, W. Liao, X.Y. Li, R.J. Ding, L.J. Zhang, H. Liu, X.D. Yuan, X.T. Zu, An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum. Appl. Surf. Sci. 4069, 91–98 (2017)

    Article  ADS  Google Scholar 

  13. P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 233(1–4), 275–287 (2004)

    Article  ADS  Google Scholar 

  14. F. Vidal, T.W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, Critical-point phase separation in laser ablation of conductors. Phys. Rev. Lett. 86(12), 2573–2576 (2001)

    Article  ADS  Google Scholar 

  15. J. Cheng, W. Perrie, B. Wu, S. Tao, S.P. Edwardson, G. Dearden, K.G.Watkins, Ablation mechanism study on metallic materials with a 10 ps laser under high fluence. Appl. Surf. Sci. 255, 8171–8175 (2009)

    Article  ADS  Google Scholar 

  16. W. Hu, Y. Shin, G. King, Energy transport analysis in ultrashort pulse laser ablation through combined molecular dynamics and Monte Carlo simulation. Phys. Rev. B 82, 094111 (2010)

    Article  ADS  Google Scholar 

  17. M.A. Jafarabadi, M.H. Mahdieh, Investigation of phase explosion in aluminum induced by nanosecond double pulse technique. Appl. Surf. Sci. 346, 263–269 (2015)

    Article  ADS  Google Scholar 

  18. P. Lorazo, L.J. Lewis, M. Meunier, Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys. Rev. Lett. 91, 225502 (2003)

    Article  ADS  Google Scholar 

  19. D. Perez, L.J. Lewis, Molecular-dynamics study of ablation of solids under femtosecond laser pulses. Phys. Rev. B 67, 184102 (2003)

    Article  ADS  Google Scholar 

  20. N.N. Nedialkov, S.E. Imamova, P.A. Atanasov, P. Berger, F. Dausinger, Mechanism of ultrashort laser ablation of metals: molecular dynamics simulation. Appl. Surf. Sci. 247, 243–248 (2005)

    Article  ADS  Google Scholar 

  21. S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, Femtosecond laser-induced periodic surface structures on silica. J. Appl. Phys. 112, 014901 (2012)

    Article  ADS  Google Scholar 

  22. F. Liang, R. Vallée, S.L. Chin, Mechanism of nanograting formation on the surface of fused silica. Opt. Express 20(4), 4389–4396 (2012)

    Article  ADS  Google Scholar 

  23. J. Bonse, J. Krüger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 108, 034903 (2010)

    Article  ADS  Google Scholar 

  24. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009)

    Article  Google Scholar 

  25. A.A. Ionin, Y.M. Klimachev, A.Y. Kozlov, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, L.V. Seleznev, D.V. Sinitsyn, A.A. Rudenko, R.A. Khmelnitsky, Direct femtosecond laser fabrication of antireflective layer on GaAs surface. Appl. Phys. B111(3), 419–423 (2013)

    Article  ADS  Google Scholar 

  26. M.H. Dar, R. Kuladeep, V. Saikiran, N. Rao, D., Femtosecond laser nanostructuring of titanium metal towards fabrication of low-reflective surfaces over broad wavelength range. Appl. Surf. Sci. 371, 479–487 (2016)

    Article  ADS  Google Scholar 

  27. F.T. Meng, J. Hu, W.N. Han, P.J. Liu, Q.S. Wang, Morphology control of laser-induced periodic surface structure on the surface of nickel by femtosecond laser. Chin. Opt. Lett. 13(6), 062201 (2015)

    Article  ADS  Google Scholar 

  28. C.Z. Yao, S.Z. Xu, Y.Y. Ye, Y. Jiang, R.J. Ding, W. Gao, X.D. Yuan, The influence of femtosecond laser repetition rates and pulse numbers on the formation of micro/nano structures on stainless steel. J. Alloy. Compd. 722, 235–241 (2017)

    Article  Google Scholar 

  29. C.Z. Yao, Y.Y. Ye, B.S. Jia, Y. Li, R.J. Ding, Y. Jiang, Y.X. Wang, X.D. Yuan, Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property. Appl. Surf. Sci. 425, 1118–1124 (2017)

    Article  ADS  Google Scholar 

  30. R. Le Harzic, D. Dorr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, F. Stracke, Large-area uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Opt. Lett. 36, 229–231 (2011)

    Article  ADS  Google Scholar 

  31. M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, J. Reif, Femtosecond laser ablation from dielectric materials: comparison to arc discharge erosion. Appl. Phys. A 69, S355–S358 (1999)

    Article  ADS  Google Scholar 

  32. D.S. Milovanović, B. Gaković, C. Radu, M. Zamfirescu, B. Radak, S. Petrović, Z. Rogić Miladinović, I.N. Mihailescu, Femtosecond laser surface patterning of steel and titanium alloy. Phys. Scr. T162, 014017 (2014)

    Article  ADS  Google Scholar 

  33. G.D. Tsibidis, E. Skoulas, E. Stratakis, Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt. Lett. 40(22), 5172–5175 (2015)

    Article  ADS  Google Scholar 

  34. O. Armbruster, A. Naghilou, M. Kitzler, W. Kautek, Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel. Appl. Surf. Sci. 396, 1736–1740 (2017)

    Article  ADS  Google Scholar 

  35. J.J.J. Nivas, Z.M. Song, R. Fittipaldi, A. Vecchione, R. Bruzzese, S. Amoruso, Direct ultrashort laser surface structuring of silicon in air and vacuum at 1055 nm. Appl. Surf. Sci. 417, 149–154 (2017)

    Article  ADS  Google Scholar 

  36. J.J.J. Nivas, F. Gesuele, E. Allahyari, S.L. Oscurato, R. Fittipaldi, A. Vecchione, R. Bruzzese, S. Amoruso Effects of ambient air pressure on surface structures produced by ultrashort laser pulse irradiation. Opt. Lett. 42, 2710–2713 (2017)

    Article  ADS  Google Scholar 

  37. T.Q. Jia, Z.Z. Xu, R.X. Li, D.H. Feng, X.X. Li, C.F. Cheng, H.Y. Sun, N.S. Xu, H.Z. Wang, Mechanisms in fs-laser ablation in fused silica. J. Appl. Phys. 95, 5166 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (Grant no: 51535003, 51701087); China Postdoctoral Science Foundation (Grant no: 2016M592709) and Sichuan Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shizhen Xu or Xiaodong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Ding, R., Yao, C. et al. Effects of pulse durations and environments on femtosecond laser ablation of stainless steel. Appl. Phys. A 124, 310 (2018). https://doi.org/10.1007/s00339-018-1714-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1714-2

Navigation