Applied Physics A

, 124:327 | Cite as

Synthesis and characterization of binary ZnO–SnO2 (ZTO) thin films by e-beam evaporation technique

  • Shagufta Bibi
  • A. Shah
  • Arshad Mahmood
  • Zahid Ali
  • Qaisar Raza
  • Uzma Aziz
  • Haneef
  • Abdul Waheed
  • Ziaullah Shah


The binary ZnO–SnO2 (ZTO) thin films with varying SnO2 concentrations (5, 10, 15, and 20 wt%) were grown on glass substrate by e-beam evaporation technique. The prepared ZTO films were annealed at 400 °C in air. These films were then characterized to investigate their structural, optical, and electrical properties as a function of SnO2 concentration. XRD analysis reveals that the crystallinity of the film decreases with the addition of SnO2 and it transforms to an amorphous structure at a composition of 40% SnO2 and 60% ZnO. Morphology of the films was examined by atomic force microscopy which points out that surface roughness of the films decreases with the increasing of SnO2 in the film. Optical properties such as optical transparency, band-gap energy, and optical constants of these films were examined by spectrophotometer and spectroscopic Ellipsometer. It was observed that the average optical transmission of mixed films improves with incorporation of SnO2. In addition, the band-gap energy of the films was determined to be in the range of 3.37–3.7 eV. Furthermore, it was found that the optical constants (n and k) decrease with the addition of SnO2. Similarly, it is observed that the electrical resistivity increases nonlinearly with the increase in SnO2 in ZnO–SnO2 thin films. However, it is noteworthy that the highest figure of merit (FOM) value, i.e., 55.87 × 10−5 Ω−1, is obtained for ZnO–SnO2 (ZTO) thin film with 40 wt% of SnO2 composition. Here, we suggest that ZnO–SnO2 (ZTO) thin film with composition of 60:40 wt% can be used as an efficient TCO film due to the improved transmission, and reduced RMS value and highest FOM value.


  1. 1.
    MdA. Islam, R.C. Roy, J. Hossain, Md. Julkarnain, K.A. Khan, Electrical and optical transport characterizations of electron beam evaporated V doped In2O3 thin films. Mater. Res. 20(1), 102–108 (2015)CrossRefGoogle Scholar
  2. 2.
    A.A. Dakhel, Optical properties of highly conductive and transparent Au-incorporated Eu oxide thin films. J. Alloys Compd. 470(1–2), 195–198 (2009)CrossRefGoogle Scholar
  3. 3.
    Y.R. Park, E. Nam, Y.S. Kim, Organic light-emitting devices with In-doped (4 at.%) ZnO thin films as the anodic electrode. Jpn. J. Appl. Phys. 47, 468–471 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    D. Xu, Z. Deng, Y. Xu, J. Xiao, C. Liang, Z. Pei, C. Sun, An anode with aluminum doped on zinc oxide thin films for organic light emitting devices. Phys. Lett. A 346, 148–152 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    C.G. Choi, S.J. Seo, B.S. Bae, Solution-processed indium–zinc oxide transparent thin-film transistors. Electrochem. Solid-State Lett. 11, H7-H9 (2008)Google Scholar
  6. 6.
    F. Ruske, C. Jacobs, V. Sittinger, B. Szyszka, W. Werner, Large area ZnO:Al films with tailored light scattering properties for photovoltaic applications. Thin Solid Films 515, 8695–8698 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    E. Cetinorgu, S. Goldsmith, R.L. Boxman, Optical properties of transparent ZnO–SnO2 thin films deposited by filtered vacuum arc. J. Phys. D 39, 1878–1884 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35–S44 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    M.-M. Bagheri-Mohagheghi, M. Shokooh-Saremi, Investigations on the physical properties of the SnO2–ZnO transparent conducting binary–binary system deposited by spray pyrolysis technique. Thin Solid Films 441, 238–242 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    T. Minami, S. Ida, T. Miyata, High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation. Thin Solid Films 416, 92–96 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    T. Minami, H. Sonohara, S. Takata, H. Sato, Highly transparent and conductive zinc-stannate thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 33, L1693 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    T. Minami, H. Nanto, S. Takata, Highly conducting and transparent SnO2 thin films prepared by RF magnetron sputtering on low-temperature substrates. Jpn. J. Appl. Phys. 27, L287 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    V.K. Jain, P. Kumar, Y.K. Vijay, Preparation of nanostructure ZnO–SnO2 thin films for optoelectronic properties and post annealing influence. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 6(12), 1192–1194 (2012)Google Scholar
  14. 14.
    A. Annamalai, Y.D. Eo, C. Im, M.J. Lee, Surface properties and dye loading behavior of Zn2SnO4 nanoparticles hydrothermally synthesized using different mineralizers. Mater. Charact. 62(10), 1007–1015 (2011)CrossRefGoogle Scholar
  15. 15.
    T. Minami, Transparent and conductive multicomponent oxide films prepared by magnetron sputtering. J. Vac. Sci. Technol. A 17, 1765 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    D. Ginley, H. Hosono, Hand Book of Transparent Conductors. (Springer, New York, 2010)Google Scholar
  17. 17.
    H. Un’no, N. Hikuma, T. Omata, N. Ueda, T. Hashimoto, H. Kawazoe, Preparation of MgIn2O4-X thin films on glass substrate by RF sputtering. Jpn. J. Appl. Phys. Part 2 32, L1260 (1993)CrossRefGoogle Scholar
  18. 18.
    B. Anuradha, C. Sanjeeviraja, Gas sensing properties of RF magnetron sputtered MgIn2O4 thin films. Sens. Actuators A 179, 98–104 (2012)CrossRefGoogle Scholar
  19. 19.
    M.J. Martínez-Lope, M. Retuerto, C. de la Calle, F. Porcher, J.A. Alonso, Why MnIn2O4 spinel is not a transparent conducting oxide? J. Solid State Chem. 187, 172–176 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    K. Yanagawa, Y. Ohki, T. Omata, H. Hosono, N. Ueda, H. Kawazoe, Preparation of Cd1-xYxSb2O6 thin film on glass substrate by radio frequency sputtering. Appl. Phys. Lett. 65, 406–408 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    H. Fan, Y. Zeng, X. Xu, N. Lv, T. Zhang, Hydrothermal synthesis of hollow ZnSnO3 microspheres and sensing properties toward butane. Sens. Actuators B 153, 170–175 (2011)CrossRefGoogle Scholar
  22. 22.
    J.M. Phillips, J. Kwo, G.A. Thomas, S.A. Carter, R.J. Cava, S.Y. Hou, J.J. Krajewski, J.H. Marshall, W.F. Peck, D.H. Rapkine, R.B. Dover, Transparent conducting thin films of GaInO3. Appl. Phys. Lett. 65, 115 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    T. Minami, H. Sonohara, T. Kakumu, S. Takata, Highly transparent and conductive Zn2In2O5 thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. Part 2 34, L971 (1995)CrossRefGoogle Scholar
  24. 24.
    T. Minami, Y. Takeda, S. Takata, T. Kakumu, Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering. Thin Solid Films 308, 13–18 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    J.E. Clayton, D.P. Cann, N. Ashmore, Synthesis and processing of AgInO2 delafossite compounds by cation exchange reactions. Thin Solid Films 411, 140–146 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    T. Tharsika, A.S.M.A. Haseeb, M.F. Sabri, Structural and optical properties of ZnO–SnO2 mixed thin films deposited by spray pyrolysis. Thin Solid Films 558, 283–288 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    F. Ynineb, A. Hafdallah, M.S. .Aida, N. Attaf, J. Bougdira, H. Rinnert, S. Rahmane, Influence of Sn content on properties of ZnO:SnO2 thin films deposited by ultrasonic spray pyrolysis. Mater. Sci. Semicond. Process. 16, 2021–2027 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Zhao, J. Ni, X. Zhao, Y. Xiong, Preparation and characterization of transparent conductive zinc doped tin oxide thin films prepared by radio-frequency magnetron sputtering. J. Wuhan Univ. Technol. Mater Sci. Ed. 26, 388–392 (2011)CrossRefGoogle Scholar
  29. 29.
    H. Enoki, T. Nakayama, J. Echigoya, The electrical and optical properties of the ZnO–SnO, thin films prepared by RF magnetron sputtering. Phys. Stat. Sol. 129, 181–191 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    D.Y.T. Martinez, R.C. Perez, G.T. Delgado, O.Z. Angel, Structural, morphological, optical and photocatalytic characterization of ZnO–SnO2 thin films prepared by the sol–gel technique. J. Photochem. Photobiol. A 235, 49–55 (2012)CrossRefGoogle Scholar
  31. 31.
    K. Sudip, Sinha, tunable structural, optical and electrical properties of annealed ZnO–SnO2 composite thin films deposited by pulsed laser deposition. Adv. Mater. Lett. 7(4), 319–324 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Sinha, T. Rakshit, S. Ray, I. Manna, Characterization of ZnO–SnO 2 thin film composites prepared by pulsed laser deposition. Appl. Surf. Sci. 257, 10551–10556 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    J.M. Caruge, J.E. Halpert, V. Wood, V. Bulovic, D.M.G. Bawendi, Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2, 247–250 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627–637 (1966)ADSCrossRefGoogle Scholar
  35. 35.
    A.B. Khatibani, S.M. Rozati, Z.A. Hallaj, Synthesis and characterization of nanostructure CdO:Zn thin films deposited by spray pyrolysis technique: molarity and heat treatment effects. Mater. Sci. Semicond. Process. 16, 980–986 (2013)CrossRefGoogle Scholar
  36. 36.
    D.L. Young, H. Moutinho, Y. Yan, T.J. Coutts, Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films. J. Appl. Phys. 92, 310–319 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shagufta Bibi
    • 2
  • A. Shah
    • 1
  • Arshad Mahmood
    • 1
  • Zahid Ali
    • 1
  • Qaisar Raza
    • 1
  • Uzma Aziz
    • 1
  • Haneef
    • 2
  • Abdul Waheed
    • 3
  • Ziaullah Shah
    • 2
  1. 1.National Institute of Lasers and Optronics (NILOP)IslamabadPakistan
  2. 2.Department of PhysicsUniversity of MansehraMansehraPakistan
  3. 3.Physics DepartmentIslamia College UniversityPeshawarPakistan

Personalised recommendations