Skip to main content
Log in

Influences of ultrathin amorphous buffer layers on GaAs/Si grown by metal–organic chemical vapor deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a technique for the growth of GaAs epilayers on Si, combining an ultrathin amorphous Si buffer layer and a three-step growth method, has been developed to achieve high crystalline quality for monolithic integration. The influences of the combined technique for the crystalline quality of GaAs on Si are researched in this article. The crystalline quality of GaAs epilayer on Si with the combined technique is investigated by scanning electron microscopy, double crystal X-ray diffraction (DCXRD), photoluminescence, and transmission electron microscopy measurements. By means of this technique, a 1.8-µm-thick high-quality GaAs/Si epilayer was grown by metal–organic chemical vapor deposition. The full-width at half-maximum of the DCXRD rocking curve in the (400) reflection obtained from the GaAs/Si epilayers is about 163 arcsec. Compared with only using three-step growth method, the current technique reduces etch pit density from 3 × 106 cm−2 to 1.5 × 105 cm−2. The results demonstrate that the combined technique is an effective approach for reducing dislocation density in GaAs epilayers on Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J.P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X.Y. Bao, Z. Ye, J.B. Pin, E. Sanchez, Appl. Phys. Lett. 104, 262103 (2014)

    Article  ADS  Google Scholar 

  2. M. Takahasi, Y. Nakata, H. Suzuki, K. Ikeda, M. Kozu, W. Hua, Y. Ohshita, J. Cryst. Growth 378, 34 (2013)

    Article  ADS  Google Scholar 

  3. Y.B. Bolkhovityanov, O.P. Pchelyakov, Phys. Usp. 51, 437 (2008)

    Article  ADS  Google Scholar 

  4. K.K. Linder, J. Phillips, O. Qasaimeh, X.F. Liu, S. Krishna, P. Bhattacharya, J.C. Jiang, Appl. Phys. Lett. 74, 1355 (1999)

    Article  ADS  Google Scholar 

  5. M. Yamaguchi, C. Amano, J. Appl. Phys. 58, 3601 (1985)

    Article  ADS  Google Scholar 

  6. S.F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, N. Otsuka, J. Appl. Phys. 68, R31 (1990)

    Article  ADS  Google Scholar 

  7. M. Akiyama, Y. Kawarada, K. Kaminishi, Jpn. J. Appl. Phys. 23, L843 (1984)

    Article  ADS  Google Scholar 

  8. M. Tachikawa, H. Mori, M. Sugo, Y. Itoh, Jpn. J. Appl. Phys. 32, L1252 (1993)

    Article  ADS  Google Scholar 

  9. M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, K. Kaminishi, J. Cryst. Growth 77, 490 (1986)

    Article  ADS  Google Scholar 

  10. J.W. Lee, H. Shichijo, H.L. Tsai, R.J. Matyi, Appl. Phys. Lett. 50, 31 (1987)

    Article  ADS  Google Scholar 

  11. M. Yamaguchi, M. Tachikawa, Y. Itoh, M. Sugo, S. Kondo, J. Appl. Phys. 68, 4518 (1990)

    Article  ADS  Google Scholar 

  12. N.A. El-Masry, J.C. Tarn, N.H. Karam, J. Appl. Phys. 64, 3672 (1988)

    Article  ADS  Google Scholar 

  13. R. Fischer, H. Morkoç, D.A. Newmann, H. Zabel, C. Choi, N. Otsuka, M. Longerbone, L.P. Erickson, J. Appl. Phys. 60, 1640 (1986)

    Article  ADS  Google Scholar 

  14. T. Soga, S. Hattori, S. Sakai, M. Umeno, J. Cryst. Growth 77, 498 (1986)

    Article  ADS  Google Scholar 

  15. T. Soga, T. Imori, M. Umeno, S. Hatori, Jpn. J. Appl. Phys. 26, L536 (1987)

    Article  ADS  Google Scholar 

  16. G. Balakrishnan, S. Huang, L.R. Dawson, Y.-C. Xin, P. Conlin, D.L. Huffaker, Appl. Phys. Lett. 86, 034105 (2005)

    Article  ADS  Google Scholar 

  17. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S.N. Elliott, A. Sobiesierski, A.J. Seeds, I. Ross, P.M. Smowton, H. Liu, Nat. Photonics 10, 307 (2016)

    Article  ADS  Google Scholar 

  18. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sana, K. Chocho, Appl. Phys. Lett. 72, 211 (1998)

    Article  ADS  Google Scholar 

  19. Y. He, J. Wang, H. Hu, Q. Wang, Y. Huang, X. Ren, Appl. Phys. Lett. 106, 202105 (2015)

    Article  ADS  Google Scholar 

  20. S.W. Kim, Y.D. Cho, C.S. Shin, W.K. Park, D.H. Kim, D.H. Ko, J. Cryst. Growth 401, 319 (2014)

    Article  ADS  Google Scholar 

  21. H.Y. Yu, S.I. Cheng, J.H. Park, A.K. Okyay, M.C. Onbasli, B. Ercan, Y. Nishi, K.C. Saraswat, Appl. Phys. Lett. 97, 063503 (2010)

    Article  ADS  Google Scholar 

  22. S. Nozaki, N. Noto, T. Egawa, A.T. Wu, T. Soga, T. Jimbo, M. Umeno, Jpn. J. Appl. Phys. 29, 138 (1990)

    Article  ADS  Google Scholar 

  23. Y. Wang, Q. Wang, Z. Jia, X. Li, C. Deng, Y. Yan, X. Ren, J. Vac. Sci. Technol. B 31, 051211 (2013)

    Article  Google Scholar 

  24. J. Yang, P. Bhattacharya, Z. Mi, IEEE Trans. Electron Devices 54, 2849 (2007)

    Article  ADS  Google Scholar 

  25. H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, X. Ren, Appl. Phys. A 122, 588 (2016)

    Article  ADS  Google Scholar 

  26. M. Ishida, H. Ohyama, S. Sasaki, Y. Yasuda, T. Nishinaga, T. Nakamura, Jpn. J. Appl. Phys. 20, L541 (1981)

    Article  ADS  Google Scholar 

  27. W.Y. Uen, Z.Y. Li, Y.C. Huang, M.C. Chen, T.N. Yang, S.M. Lan, C.H. Wu, H.F. Hong, G.C. Chi, J. Cryst. Growth 295, 103 (2006)

    Article  ADS  Google Scholar 

  28. J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, X. Ren, Chin. Phys. Lett. 32, 088101 (2015)

    Article  ADS  Google Scholar 

  29. K. Ismail, F. Legoues, N.H. Karam, J. Carter, H.I. Smith, Appl. Phys. Lett. 59, 2418 (1991)

    Article  ADS  Google Scholar 

  30. M.S. Hao, J.W. Liang, X.J. Jin, Y.T. Wamg, L.S. Deng, Z.B. Xiao, L.X. Zheng, X.W. Hu, Chin. Phys. Lett. 13, 42 (1996)

    Article  ADS  Google Scholar 

  31. J.E. Ayers, J. Cryst. Growth 135, 71 (1994)

    Article  ADS  Google Scholar 

  32. P. Zhang, Y. Song, J. Tian, X. Zhang, Z. Zhang, J. Appl. Phys. 105, 053103 (2009)

    Article  ADS  Google Scholar 

  33. W. Stolz, F.E.G. Guimaraes, K. Ploog, J. Appl. Phys. 63, 492 (1988)

    Article  ADS  Google Scholar 

  34. Y.L. He, X.N. Liu, Acta Electron Sin 4, 71 (1982)

    Google Scholar 

  35. J.A. Reimer, R.W. Vaughan, J.C. Knights, Solid State Commun. 37, 161 (1981)

    Article  ADS  Google Scholar 

  36. M. Conradi, R. Norberg, Phys. Rev. B 24, 2285 (1981)

    Article  ADS  Google Scholar 

  37. D.E. Polk, J. Non-Cryst. Solids 5, 365 (1971)

    Article  ADS  Google Scholar 

  38. Z. Iqbal, S. Veprek, A.P. Webb, P. Capezzuto, Solid State Commun. 37, 993 (1981)

    Article  ADS  Google Scholar 

  39. J. Soutadé, C. Fontaine, A. Muñoz-Yagüe, Appl. Phys. Lett. 59, 1764 (1991)

    Article  ADS  Google Scholar 

  40. S. Nishi, H. Inomata, M. Akiyama, K. Kaminishi, Jpn. J. Appl. Phys. 24, L391 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) under Grant IPOC2016ZT01, the National Natural Science Foundation of China under Grant No. 61674020, 61574019, and 61474008, the International Science & Technology Cooperation Program of China under Grant 2011DFR11010, the 111Project of China under Grant B07005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Wang, J., Cheng, Z. et al. Influences of ultrathin amorphous buffer layers on GaAs/Si grown by metal–organic chemical vapor deposition. Appl. Phys. A 124, 296 (2018). https://doi.org/10.1007/s00339-018-1707-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1707-1

Navigation