Skip to main content
Log in

A compact model for selectors based on metal doped electrolyte

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A selector device that demonstrates high nonlinearity and low switching voltages was fabricated using HfOx as a solid electrolyte doped with Ag electrodes. The electronic conductance of the volatile conductive filaments responsible for the switching was studied under both static and dynamic conditions. A compact model is developed from this study that describes the physical processes of the formation and rupture of the Ag filament(s). A dynamic capacitance model is used to fit the transient current traces under different voltage bias, which enables the extraction of parameters associated with the various parasitic components in the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.O. Chua, Memristor-the missing circuit element. Circuit Theory IEEE Trans. 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. D.B. Strukov et al., The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  ADS  Google Scholar 

  3. G.A. Gibson et al., An accurate locally active memristor model for S-type negative differential resistance in NbOx. Appl. Phys. Lett. 108(2), 023505 (2016)

    Article  ADS  Google Scholar 

  4. G.W. Burr et al., Access devices for 3D crosspoint memory a. J. Vac. Sci. B Technol. Nanotechnol. Microelectron. 32(4),040802 (2014)

    Article  Google Scholar 

  5. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nature Nanotechnol. 8(1), 13–24 (2013)

    Article  ADS  Google Scholar 

  6. B.J. Choi et al., Trilayer tunnel selectors for memristor memory cells. Adv. Mater. 28(2), 356–362 (2016)

    Article  Google Scholar 

  7. W.G. Kim et al., NbO 2-based low power and cost effective 1S1R switching for high density cross point ReRAM Application. In: 2014 symposium on VLSI technology (VLSI-Technology): digest of technical papers. 2014

  8. Kim, S., et al. Ultrathin (< 10 nm) Nb 2 O 5/NbO 2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications. in VLSI technology (VLSIT), 2012 symposium on. 2012. IEEE

  9. G. Burr et al., Large-scale (512kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield. in VLSI technology (VLSIT), 2012 symposium on. 2012. IEEE

  10. S.H. Jo et al., 3D-stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector. Electron devices meeting (IEDM), 2014 IEEE international. 2014. IEEE

  11. L. Zhang et al., Ultrathin metal/amorphous-silicon/metal diode for bipolar RRAM selector applications. Electron Dev. Lett. IEEE 35(2), 199–201 (2014)

    Article  ADS  Google Scholar 

  12. V. Srinivasan et al., Punchthrough-diode-based bipolar RRAM selector by Si epitaxy. Electron Dev. Lett. IEEE 33(10), 1396–1398 (2012)

    Article  ADS  Google Scholar 

  13. M. Wang et al., A selector device based on graphene–oxide heterostructures for memristor crossbar applications. Appl. Phys. A 120(2), 403–407 (2015)

    Article  ADS  Google Scholar 

  14. W. Lee et al., Varistor-type bidirectional switch (J MAX> 10 7 A/cm 2, selectivity∼ 10 4) for 3D bipolar resistive memory arrays. In VLSI Technology (VLSIT), 2012 symposium on. 2012. IEEE

  15. M. Son et al., Excellent selector characteristics of nanoscale for high-density bipolar ReRAM applications. Electron Dev. Lett. IEEE 32(11), 1579–1581 (2011)

    Article  ADS  Google Scholar 

  16. J.J. Yang et al., Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100(11), 113501 (2012)

    Article  ADS  Google Scholar 

  17. Z. Wang et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Mater. 16(1), 101–108 (2017)

    Article  ADS  Google Scholar 

  18. R. Midya et al., Anatomy of Ag/Hafnia-Based Selectors with 1010 Nonlinearity. Adv. Mater., 29,1604457 (2017)

    Article  Google Scholar 

  19. Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J.H. Yoon, N.K. Upadhyay, J. Zhang, M. Hu, J.P. Strachan, M. Barnell, Q. Wu, H. Wu, R.S. Williams, Q. Xia, J.J. Yang, Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018)

    Article  Google Scholar 

  20. J.H. Yoon, Z. Wang, K.M. Kim, H. Wu, V. Ravichandran, Q. Xia, C.S. Hwang, J.J. Yang, An artificial nociceptor based on a diffusive memristor. Nat. Commun. 9(1), 417 (2018). https://doi.org/10.1038/s41467-017-02572-3

    Article  ADS  Google Scholar 

  21. H. Jiang, D. Belkin, S.E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J.J. Yang, Q. Xia, A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8(1), 882 (2017). https://doi.org/10.1038/s41467-017-00869-x

    Article  ADS  Google Scholar 

  22. Z. Wang, M. Rao, R. Midya, S. Joshi, H. Jiang, P. Lin, W. Song, S. Asapu, Y. Zhuo, C. Li, H. Wu, Q. Xia, J.J. Yang, Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications. Adv. Funct. Mater. 28(6), 1704862 (2018)

    Article  Google Scholar 

  23. C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila, C.E. Graves, Z. Li, J.P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R.S. Williams, J.J. Yang, Q. Xia, Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1(1), 52–59 (2018)

    Article  Google Scholar 

  24. J.H. Yoon, J. Zhang, X. Ren, Z. Wang, H. Wu, Z. Li, M. Barnell, Q. Wu, L.J. Lauhon, Q. Xia, J.J. Yang, Truly electroforming-free and low-energy memristors with preconditioned conductive tunneling paths. Adv. Funct. Mater. 27(35), 1702010 (2017)

    Article  Google Scholar 

  25. S. Cuenot et al., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69(16), 165410 (2004)

    Article  ADS  Google Scholar 

  26. J.P. Strachan et al., State dynamics and modeling of tantalum oxide memristors. Electron Dev. IEEE Trans. 60(7), 2194–2202 (2013)

    Article  ADS  Google Scholar 

  27. L. Zhang et al., Low voltage two-state-variable memristor model of vacancy-drift resistive switches. Appl. Phys. A 119(1), 1–9 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Zhang et al., A compact modeling of TiO2-TiO2–x memristor. Appl. Phys. Lett. 102(15), 153503 (2013)

    Article  ADS  Google Scholar 

  29. M.D. Pickett et al., Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 074508 (2009)

    Article  ADS  Google Scholar 

  30. D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility ofáthin-film memristors. Appl. Phys. A 94(3), 515–519 (2009)

    Article  ADS  Google Scholar 

  31. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nature materials 6(11), 833–840 (2007)

    Article  ADS  Google Scholar 

  32. R. Waser et al., Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25-26), 2632–2663 (2009)

    Article  Google Scholar 

  33. J.J. Yang et al., Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnol 3(7), 429–433 (2008)

    Article  Google Scholar 

  34. M. Kund et al., Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm. IEEE international electron devices meeting, 2005. IEDM technical digest. 2005

  35. J.D. McBrayer, R. Swanson, T. Sigmon, Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 133(6), 1242–1246 (1986)

    Article  Google Scholar 

  36. D.B. Strukov, F. Alibart, R.S. Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107(3), 509–518 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge (in alphabetical order) Dr. Gary Gibson, Dr. Zhiyong Li, Katy Samuels, Dr. R. Stanley Williams, Dr. M-X. Zhang in Hewlett Packard Enterprise Labs, AFRL FA8750-15-2-0048 and NSF XPS-1,337,198 for support of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4593 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Song, W., Yang, J.J. et al. A compact model for selectors based on metal doped electrolyte. Appl. Phys. A 124, 333 (2018). https://doi.org/10.1007/s00339-018-1706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1706-2

Navigation