Skip to main content
Log in

The influence of the PCF scattering on the electrical properties of the AlGaN/AlN/GaN HEMTs after the Si3N4 surface passivation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the detailed device characteristics were investigated both before and after the Si3N4 passivation grown by plasma-enhanced chemical vapor deposition (PECVD). Better transport properties have been observed for the passivated devices compared with the same ones before passivation. The strain variation and the influence of the scattering mechanisms were analyzed and studied. The calculated results show that the non-uniform distribution of the additional polarization charges at the AlGaN/AlN/GaN interfaces has been weakened by the deposition of the Si3N4 layer. The numerical rise of the two-dimensional electron gas (2DEG) electron mobility and the decrease of the measured RonA values were in a good consistency, and the weakening of the polarization Coulomb field (PCF) scattering after the passivation process is considered to be the main cause of these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, Proc. IEEE 96, 287 (2008)

    Article  Google Scholar 

  2. N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Yoshida, Proc. IEEE 98, 1151 (2010)

    Article  Google Scholar 

  3. M.A. Mastro, D. Tsvetkov, V. Soukhoveev, A. Uskiov, V. Dmitriev, B. Luo, F. Ren, K.H. Basi, S.J. Pearton, Solid State Electron. 47, 1075 (2003)

    Article  ADS  Google Scholar 

  4. J. Xu, PhD Dissertation, University of California at Santa Barbara (2000)

  5. C. Mizue, Y. Hori, M. Miczek, T. Hashizume, J. Appl. Phys. 50, 021001 (2011)

    Article  Google Scholar 

  6. R. Vetury, N.Q. Zhang, S. Keller, U.K. Mishra, IEEE Trans. Electron Devices 48, 560 (2001)

    Article  ADS  Google Scholar 

  7. B.M. Green, K.K. Chu, E.M. Chumbes, J.A. Smart, J.R. Shealy, L.F. Eastman, IEEE Electron Device Lett. 21, 268 (2000)

    Article  ADS  Google Scholar 

  8. J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, S. Degroote, M.R. Leys, M. Germain, G. Borghs, J. Appl. Phys. 98, 054501 (2005)

    Article  ADS  Google Scholar 

  9. S.M. Hu, J. Appl. Phys. 70, R53 (1991)

    Article  ADS  Google Scholar 

  10. C. Fu, Z.J. Lin, Y. Liu, P. Cui, Y.J. Lv, Y. Zhou, G. Dai, C.B. Luan, Superlattices Microstruct. 111, 806 (2017)

    Article  ADS  Google Scholar 

  11. W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura, IEEE Trans. Electron Devices 50, 2528 (2005)

    Article  ADS  Google Scholar 

  12. N. Onojimma, M. Higashiwaki, J. Suda, T. Kimoto, T. Mimura, T. Matsui, J. Appl. Phys. 101, 043703 (2007)

    Article  ADS  Google Scholar 

  13. F. Zhou, H.P. Lin, L. Zhang, J. Li, X.W. Zhang, D.B. Yu, X.Y. Jiang, Z.L. Zhang, Curr. Appl. Phys. 12, 228 (2012)

    Article  ADS  Google Scholar 

  14. Y. Ohno, T. Nakao, S. Kishimoto, K. Maezawa, T. Mizutani, Appl. Phys. Lett. 84, 2184 (2004)

    Article  ADS  Google Scholar 

  15. J.Z. Zhao, Z.J. Lin, D.C. Timothy, Z. Wang, Z.D. You, Z.G. Wang, Appl. Phys. Lett. 91, 173507 (2007)

    Article  ADS  Google Scholar 

  16. K. Hirakawa, H. Sakaki, Phys. Rev. B 33, 8291 (1986)

    Article  ADS  Google Scholar 

  17. K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, J. Appl. Phys. 54, 6432 (1983)

    Article  ADS  Google Scholar 

  18. L. Hsu, W. Walukiewicz, Phys. Rev. B 56, 1520 (1997)

    Article  ADS  Google Scholar 

  19. D.N. Quang, V.N. Tuoc, T.D. Huan, Phys. Rev. B 68, 195316 (2003)

    Article  ADS  Google Scholar 

  20. M.N. Gurusinghe, S.K. Davidsson, T.G. Andersson, Phys. Rev. B 72, 045316 (2005)

    Article  ADS  Google Scholar 

  21. T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Article  ADS  Google Scholar 

  22. Y.J. Lv, Z.J. Lin, Y. Zhang, L.G. Meng, C.B. Luan, Z.F. Cao, H. Chen, Z.G. Wang, Appl. Phys. Lett. 98, 123512 (2011)

    Article  ADS  Google Scholar 

  23. C.B. Luan, Z.J. Lin, Y.J. Lv, J.T. Zhao, Y.T. Wang, H. Chen, Z.G. Wang, J. Appl. Phys. 116, 044507 (2014)

    Article  ADS  Google Scholar 

  24. A.F.M. Anwar, R.T. Webster, K.V. Smith, Appl. Phys. Lett. 88, 203510 (2006)

    Article  ADS  Google Scholar 

  25. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M.Stutzmann,W. Rieger, J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999)

    Article  ADS  Google Scholar 

  26. P. Cui, H. Liu, W. Lin, Z.J. Lin, A.J. Cheng, M. Yang, Y. Liu, C. Fu, Y.J. Lv, C.B. Luan, IEEE Trans. Electron Devices. 64, 1038 (2017)

    Article  ADS  Google Scholar 

  27. M. Yang, Z.J. Lin, J.T. Zhao, P. Cui, C. Fu, Y.J. Lv, Z.H. Feng, IEEE Trans. Electron Devices 63, 1471 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 11174182, 11574182, 61674130, 61504127, 11471194 and 11571115), the Developing Foundation of CAEP (Grant no. 2014A05011) and Science Challenge Project (Grant no. TZ2017003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojun Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Lin, Z., Cui, P. et al. The influence of the PCF scattering on the electrical properties of the AlGaN/AlN/GaN HEMTs after the Si3N4 surface passivation. Appl. Phys. A 124, 299 (2018). https://doi.org/10.1007/s00339-018-1702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1702-6

Navigation