Applied Physics A

, 124:304 | Cite as

Preparation and photocatalytic performance of fibrous Tb3+-doped TiO2 using collagen fiber as template

  • Ting Luo
  • Xiang-Jun Wan
  • Shang-Xuan Jiang
  • Li-Yuan Zhang
  • Zheng-Qu Hong
  • Jiao Liu


Fibrous Tb3+-doped TiO2 were prepared using collagen fiber as template. Morphology, crystalline structure, surface area, element content, chemical composition and elemental chemical status, microstructure and element distribution of the prepared samples were characterized by using scanning electron microscopy, X-ray diffraction, specific surface area analysis, inductively coupled plasma atomic emission spectrometer, X-ray photoelectron spectroscopy, transmission electron microscope and element mapping, respectively. The photocatalytic activities were evaluated by following degradation of methyl orange. The results showed that the fiber structure of collagen template was fully preserved when the calcination temperature was 500–800 °C. However, with the increase of calcination temperature, crystallinity and average particle size were increased, and the photocatalytic performance was decreased. For 2% Tb3+–TiO2 calcined at 500 °C, the degradation rate of methyl orange reached 93.87% after 6 h when a high-pressure mercury lamp (150 W) was used as the light source for photocatalytic degradation. Titanium tanning agent performance was excellent, the yield of TiO2 was high, and the fiber structure was presented when 0.2 mol/L citric acid/sodium citrate buffer solution was used.



This work was funded partially by Students’ Scientific Research Project of Neijiang Normal University (NO. 16NSD-24) and Doctoral Research Start-up Funding of Neijiang Normal University (NO. 15B16). Thanks are due to Prof. Zeng Huang for language revision.


  1. 1.
    Q. Luo, Q.Z. Cai, A novel method to synthesize molybdenum doped TiO2 films with enhanced photocatalytic activity. Appl. Phys. A Mater. Sci. Process. 123(6), 451 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    X.S. Gao, Z.J. Tian, Z.D. Liu et al., Interface characteristics of Al2O3-13%TiO2 ceramic coatings prepared by laster cladding. Trans. Nonferrous Met. Soc. China 22(10), 2498–2503 (2012)CrossRefGoogle Scholar
  3. 3.
    H.F. Chen, P.S. Tang, G.X. Pan et al., Preparation of Ag/TiO2/PA self-cleaning paint by In-suit polymerization and its antimicrobial properties. Rare Metal Mater. Eng. 41, 254–257 (2012)Google Scholar
  4. 4.
    D. Qian, R.J. Cheng, Z.G. Lu et al., TiO2/SiO2 core shell structured particles: assembly and electrochemical characteristics. Chin. J. Inorg. Chem. 23(2), 305–309 (2007)Google Scholar
  5. 5.
    L. Ling, X.X. Wang, H. Wong et al., Modification of CoMo/TiO2–Al2O3 catalyst by gas phase fluorination. Chin. J. Phys. Chem. 19(1), 70–74 (2003)Google Scholar
  6. 6.
    W.D. Zhang, J.T. Li, P.Y. Gu et al., Temperature programmed decomposition of NO over Er2O3/Bi2O3 catalysts. Chin. J. Chem. 19(6), 961–963 (1998)Google Scholar
  7. 7.
    H.L. Zheng, J.H. Zhang, W.Q. Xiong, New progress in the study on and application of organic pollutants photodegraded by Nano-TiO2. Spectrosc. Spectr. Anal. 24(8), 1003–1008 (2004)Google Scholar
  8. 8.
    J.X. Low, B. Chen, J.G. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci. 392, 658–686 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    M.R. Hoffman, S.T. Martin, W. Choi et al., Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)CrossRefGoogle Scholar
  10. 10.
    W.K. Zhao, Y.L. Fang, K.C. Zhang et al., Preparation of nanosized anatase TiO2 powder with high thermal stability. J. Inorg. Mater. 16(4), 608–612 (1998)Google Scholar
  11. 11.
    X.H. Liu, X. Wang, X.J. Yang et al., Preparation, characterization and application of nanocrystalline titania. Jiangsu Chem. Ind. 27(5), 5–7 (1999)Google Scholar
  12. 12.
    Z.Z. Yang, Ultrafine TiO2—a new type of chemical material with broad prospect. Mod. Chem. Eng. (1), 38–40 (1994)Google Scholar
  13. 13.
    J.G. Zhou, X.S. Niu, The fine inorganic chemicals. (Higher Education Press, Beijing, 1999)Google Scholar
  14. 14.
    N. Lu, X. Quan, J. Li, S. Chen et al., Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. C 111(22), 11836–11842 (2007)CrossRefGoogle Scholar
  15. 15.
    N. Masahashi, M. Oku, Superhydrophilicity and XPS study of boron-doped TiO2. Appl. Surf. Sci. 254(21), 7056–7060 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    X.C. An, L.J. Han, Z.Y. Chen et al., Preparation of nitrogen doped TiO2 powder by sol-gel method. Petrochem. Ind. 40(9), 1000–1005 (2011)Google Scholar
  17. 17.
    Y.N. Zhao, G. Liu, C.H. Sun et al., Doping states of boron in nanocrystalline TiO2 powder. J. Mater. Res. 22(2), 125–129 (2008)Google Scholar
  18. 18.
    H.G. Li, J. Yan, S.G. Du et al., Investigation on the stability of W/O emulsion and microencapsulation of nano-TiO2 sol. J. Adv. Chem. Eng. 28(4), 858–863 (2014)Google Scholar
  19. 19.
    Y. Cheng, J.Q. Cheng, S. Ding, Controlled synthesis of nano-sized TiO2 powder using high-temperature vapor phase process. J. Chem. Eng. 58(8), 2103–2109 (2007)Google Scholar
  20. 20.
    D.C. Li, D.L. Zhou, H. Liu et al., Preparation of nanometre TiO2. Sichuan Nonferrous Met. (2), 1–8 (2003)Google Scholar
  21. 21.
    S. Islam, N. Bidin, S.S. Osman et al., Synthesis and characterization of Ni NPs-doped silica–titania nanocomposites: structural, optical and photocatalytic properties. Appl. Phys. A Mater. Sci. Process. 123(1), 67 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    X. Zhao, P. Liu, M. Wu et al., Y2O3 modified TiO2 nanosheets enhance the photocatalytic removal of 4-chlorophenol and Cr(VI) in sunlight. Appl. Surf. Sci. 410, 134–144 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    T.H. Hou, Study on the structure and electronic properties of lanthanide-doped Nano-TiO2. (Sichuan University, Chengdu, 2006)Google Scholar
  24. 24.
    X.H. Liu, Z.C. Wu, Y.W. Zhao et al., Effects of doping micro platinum on the structures and performances of TiO2 powder. J. Chem. 67(6), 507–512 (2009)Google Scholar
  25. 25.
    X.H. Liu, X.B. He, Y.B. Fu, Effects of doping cobalt on the structures and performances of TiO2 photocatalyst. J. Chem. 66(14), 1725–1730 (2008)Google Scholar
  26. 26.
    W. Yang, H. Guo, W.H. Zhang et al., Preparation and catalytic activity for degradation of acidic fuchsine of TiO2 photocatalyst. Spectrosc. Spectr. Anal. 28(4), 922–925 (2008)Google Scholar
  27. 27.
    W.L. Liu, H.B. Zhang, J.H. Chen et al., The preparation and properties of Nitrogen-doped TiO2 photocatalyst. Rare Met. Mater. Eng. 36(S2), 430–433 (2007)Google Scholar
  28. 28.
    X.Y. Zhang, X.L. Cui, Preparation and photocatalytic hydrogen evolution performance of C-N Co-doped Nano TiO2 photocatalysts. Chin. J. Phys. Chem. 25(9), 1829–1834 (2009)ADSGoogle Scholar
  29. 29.
    T.S. Jiang, L. Zhang, M.R. Ji et al., Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology 11(6), 737–742 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Shiraishi, A. Naoya Saito, T. Hirai, Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. J. Am. Chem. Soc. 127(37), 12820 (2005)CrossRefGoogle Scholar
  31. 31.
    J.G. Yu, Y.R. Su, B. Cheng, Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-mesoporous titania. Adv. Funct. Mater. 17(12), 1984–1990 (2007)CrossRefGoogle Scholar
  32. 32.
    J.X. Zhao, Research progress of the template method used for TiO2 photocatalyst. Shanghai Chem. 36(10), 22–25 (2011)Google Scholar
  33. 33.
    L. Liu, Y. Hu, W.H. Dan et al., Molecular mechanism in process of fiber opening-up. China Leather 42(3), 10–12 (2013)Google Scholar
  34. 34.
    D.H. Deng, R. Tang, X.P. Liao et al., Using collagen fiber as a template to synthesize hierarchical mesoporous alumina fiber, Langmuir: the ACS. J. Surf. Colloids 24(2), 368–370 (2008)CrossRefGoogle Scholar
  35. 35.
    N.N. Yan, Y. Zhang, J. Wu et al., Reseerch progress on TiO2 photocatalyst doped with RE Ions. Mater Herald 25(17), 72–74 (2011)Google Scholar
  36. 36.
    B. Choudhury, B. Borah, A. Choudhury, Ce-Nd codoping effect on the structural and optical properties of TiO2 nanoparticles. Mater. Sci. Eng. B 178(4), 239–247 (2013)CrossRefGoogle Scholar
  37. 37.
    Z.W. Zhang, J. Fan, Effect of doping Tb on photocatalytic activity of Nano-TiO2. Petrochem. Ind. 36(9), 956–960 (2007)Google Scholar
  38. 38.
    Q. Lan, Preparation and photocatalytic activity study of nonmetal and lanthanum Co-doped titanium dioxide catalyst. Shanghai: East China University of Science and Technology, (2013)Google Scholar
  39. 39.
    X.H. Wu, L.S. Shi, W. Qin et al., Titanium dioxide films grown on Ti substitute and their photo-catalytic activities. J. Harbin Inst. Technol. 38(11), 1919–1922 (2006)Google Scholar
  40. 40.
    X. Wang, R.G. Li, Q. Xu et al., Roles of (001) and (101) facets of anatase TiO2 in photocatalytic reactions. Chin. J. Phys. Chem. 29(7), 1566–1571 (2013)MathSciNetGoogle Scholar
  41. 41.
    H.X. Zhang, Y.H. Zhang, Y.X. Xu et al., Phase transition and photocatalytic properties of terbium doped nanosized titanium dioxide. J. Chem. 61(11), 1813–1818 (2003)Google Scholar
  42. 42.
    J. Lin, C.Y. Jimmy, An investigation on photocatalytic activities of mixed TiO2 rare earth oxides for the oxidation of acetone in air. J. Photochem. Photobiol. A Chem. 116(1), 63–67 (1998)CrossRefGoogle Scholar
  43. 43.
    X.Y. Yu, J.J. Chen, Y.J. Du, An investigation on phase transformation and photocatalytic activities of mixed TiO2-rare earth oxidation. Glass Enamel 28(2), 15–20 (2000)Google Scholar
  44. 44.
    A.W. Xu, Y. Gao, H.Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 207(2), 151–157 (2002)CrossRefGoogle Scholar
  45. 45.
    L.Y. Zhang, Z.X. Liu, X.L. Yu et al., Preparation and photocatalytic property of Ag-doped TiO2. J. Funct. Mater. 41(12), 2169–2173 (2010)Google Scholar
  46. 46.
    S.W. Deng, J. Yu, C. Yang et al., Gd, I-doped TiO2 thin films coated on solid waste material: synthesis, characterization, and photocatalytic activity under UV or visible light irradiation. Appl. Phys. A Mater. Sci. Process. 123, 639 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    S. Paul, B. Choudhury, A. Choudhury, Magnetic property study of Gd doped TiO2 nanoparticles. J. Alloy. Compd. 601(27), 201–206 (2014)CrossRefGoogle Scholar
  48. 48.
    G.L. Li, L. Li, K. Fu et al., Effect of active metal yttrium film on oxygen concentration in terbium. J. Funct. Mater. 46(23), 23061–23063 (2015)Google Scholar
  49. 49.
    V. Kumar, O.M. Ntwaeaborwa, J. Holsa et al., The role of oxygen and titanium related defects on the emission of TiO2:Tb3+ nano-phosphor for blue lighting applications. Opt. Mater. 46, 510–516 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Y.Y. Zhang, D. Gu, L.Y. Zhu et al., Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocatalytic degradation of nitrobenzene. Appl. Surf. Sci. 420, 896–904 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ting Luo
    • 1
  • Xiang-Jun Wan
    • 1
  • Shang-Xuan Jiang
    • 1
  • Li-Yuan Zhang
    • 1
    • 2
  • Zheng-Qu Hong
    • 1
  • Jiao Liu
    • 1
  1. 1.College of Chemistry and Chemical EngineeringNeijiang Normal UniversityNeijiangChina
  2. 2.Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial CollegeNeijiangChina

Personalised recommendations