Applied Physics A

, 124:287 | Cite as

Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark

  • Swades Ranjan Bera
  • Satyajit Saha


CdTe nanoparticles have been grown by chemical reduction method using EDA as capping agent. These are used to fabricate Schottky barrier in a simple cost-effective way at room temperature. The grown nanoparticles are structurally characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM). The optical properties of nano CdTe is characterized by UV–Vis absorption spectra, PL spectra. The band gap of the CdTe nanoparticles is increased as compared to CdTe bulk form indicating there is blue shift. The increase of band gap is due to quantum confinement. Photoluminescence spectra shows peak which corresponds to emission from surface state. CdTe nanofilm is grown on ITO coated glass substrate by dipping it on toluene containing dispersed CdTe nanoparticles. Schottky barrier of Au/n-CdTe is fabricated on ITO coated glass by vacuum deposition of gold. IV and CV characteristics of Au/n-CdTe Schottky barrier junction have been studied under dark and light condition. It is found that these characteristics are influenced by surface or interface traps. The values of barrier height, ideality factor, donor concentration and series resistance are obtained from the reverse bias capacitance–voltage measurements.



Authors are acknowledging UGC (SAP) and DST (FIST) for supporting department of Physics and Technophysics Department of Vidyasagar University with various instrumental facilities.


  1. 1.
    T. Trindade, P.O. Brien, N.L. Pickett, Chem. Mater. 13(11), 43 (2001)CrossRefGoogle Scholar
  2. 2.
    G.M. Whitesides, G. Bartosz, Science, 295:2418–2421 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature. 425, 274 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    M.C. McAlpine, R.S. Friedman, S. Jin, K. Lin, W.U. Wang, C.M. Lieber, Nano Lett. 3, 1531 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    B.R. Mehta, F.E. Kruis, Solar Energy Mater Solar Cells 85(1), 107 (2005)Google Scholar
  6. 6.
    W. Wang, C. Chen, K.H. Lin, Y. Fang, C.M. Lieber, Nanosensors, US 2007/0264623 A1, (2007)Google Scholar
  7. 7.
    M.H. Ehsan, H.R. Dizaji, M.H. Mirha, Dig J Nanomater Biostruct. 7, 629 (2012)Google Scholar
  8. 8.
    V.P. Singh, J.C. McClure, Sol Energy Mater Sol Cells. 76, 369 (2003)CrossRefGoogle Scholar
  9. 9.
    V.P. Singh, R.S. Singh, J.W. Thompson, V. Jayaraman, S. Sanagapalli, V.K. Rangari, Sol Energy Mater Sol Cells. 81, 293 (2004)CrossRefGoogle Scholar
  10. 10.
    H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Nature. 375(6534), 769 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature. 409(6816), 66 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    B. Gates, Y. Wu, Y. Yin, P. Yang, Y. Xia, J. Am. Chem. Soc. 123(46), 11500 (2001)CrossRefGoogle Scholar
  13. 13.
    J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science. 287(5457), 1471 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    C.R. Martin, Science. 266(5193), 1961 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature. 404(6773), 59 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    S.R. Nicewarner-Peña, R.G. Freeman, B.D. Reiss, L. He, D.J. Peña, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan, Science. 294(5540), 137 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    J.S. Yu, J.Y. Kim, S. Lee, J.K.N. Mbindyo, B.R. Martinb, T.E. Mallouk, Chem Commun. 24, 2445 (2000)CrossRefGoogle Scholar
  18. 18.
    A. Alnajjar, M.F.A. Alias, R.A. Almatuk, A.A. Al-Douri, Renew. Energy. 34, 2160 (2009)CrossRefGoogle Scholar
  19. 19.
    W.F. Mohammad, Circuits Syst. 3, 42 (2012)CrossRefGoogle Scholar
  20. 20.
    J.D. Olson, Y.W. Rodriguez, L.D. Yang, G.B. Alers, S.A. Carter, Appl. Phys. Lett. 96, 242103 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S. Sun, H. Liu, Y. Gao, D. Qin, J. Chen, J. Mater. Chem. 22, 19207 (2012)CrossRefGoogle Scholar
  22. 22.
    I.M. Dharmadasa, G.G. Roberts, M.C. Petty, J. Phys. D: Appl. Phys. 15, 901 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    S.H. Demtsu, J.R. Sites, Thin Solid Films. 510, 320 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    K.R. Chauhan, I. Mukhopadhyay, J. Appl. Phys. 115, 224506 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    G. Kartopu, L.J. Phillips, V. Barrioz, S.J.C. Irvine, S.D. Hodgson, E. Tejedor, D. Dupin, A.J. Clayton, S.L. Rugen-Hankey, K. Durose, Prog. Photovolt: Res. Appl. 24, 283 (2016)CrossRefGoogle Scholar
  26. 26.
    D. Zhao, Z. He, W.H. Chan, M.M.F. Choi, J. Phys. Chem. C 113, 1293 (2008)CrossRefGoogle Scholar
  27. 27.
    H.B. Bu, H. Kikunaga, K. Shimura, K. Takahasi, T. Taniguchi, D.G. Kim, Phys. Chem. Chem. Phys. 15, 2903 (2013)CrossRefGoogle Scholar
  28. 28.
    N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, G. Dearden, K.G. Watkins, Appl. Phys. Lett. 95, 033302 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M.A.S. Sadjadi, B. Sadeghi, M. Meskinfam, K. Zare, J. Azizian, Physica E. 40, 3183 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    S. Saha, S.R. Bera, Int J Metall Mat Sci Eng. 3(1), 37 (2013)Google Scholar
  31. 31.
    S.R. Bera, S. Saha, Appl Nanosci. 6, 1037 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    A.K. Tiwari, V.K. Verma, T.A. Jain, P.K. Bajpai, Soft Nanosci Lett. 3, 52 (2013)CrossRefGoogle Scholar
  33. 33.
    R.S. Singh, V.K. Rangari, S. Sanagapalli, V. Jayaraman, S. Mahendra, V.P. Singh, Sol Energy Mater Sol Cells. 82, 315 (2004)CrossRefGoogle Scholar
  34. 34.
    S. Riaz, A. Butt, S. Naseem, The 2013 World Congress on Adv. in Nano, Biomechanics, Robotics and Ener. Res., Seoul, Korea, (2013) 654Google Scholar
  35. 35.
    J.J. Glennon, W.E. Buhro, R.A. Loomis, J. Phys. Chem. C. 112(13), 4813 (2008)CrossRefGoogle Scholar
  36. 36.
    Y.S. Park, Y. Okamoto, N. Kaji, M. Tokeshi, Y. Baba, J. Nanopart. Res. 13, 5781 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    T. Suriwong, A. Phuruangrat, S. Thongtem, T. Thongtem, J. Ovonic Res. 11(6), 257 (2015)Google Scholar
  38. 38.
    S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981), pp. 249Google Scholar
  39. 39.
    B.G. Streetman, S.K. Banerjee, Solid state electronic devices. 6th edn. (PHI Learning Private Limited, New Delhi-11000, 1 2009), pp-228Google Scholar
  40. 40.
    J.R. Pugh, D. Mao, J.G. Zhang, M.J. Heben, A.J. Nelson, A.J. Frank, J. Appl. Phys. 74(4), (1993)Google Scholar
  41. 41.
    H. Kanbur, S. Altindal, ,T. Mammadov, Y. Şafak, J Optoelectron Adv. Mat. 13(6), 713 (2011)Google Scholar
  42. 42.
    R.K. Swank, Phys. Rev. 153, 844 (1967)ADSCrossRefGoogle Scholar
  43. 43.
    P.C. Rusu, G. Brocks, J. Phys. Chem. B. 10, 22628 (2006)CrossRefGoogle Scholar
  44. 44.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)ADSCrossRefGoogle Scholar
  45. 45.
    D.T. Quan, H. Hbib, Solid-State Electron. 36, 339 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    S. Karataş, S. Altındal, A. Türüt, A. Özmen, Appl. Surf. Sci. 217, 250 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    S. Altındal, A. Tataroğlu, I. Dökme, Solar Energy Mater. and Solar Cells. 85, 345 (2005)CrossRefGoogle Scholar
  48. 48.
    S. Chand, J. Kumar, Semicond. Sci. Technol. 10, 1680 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    S. Ashok, K.P. Pande, Sol. Cells. 14, 61 (1985)CrossRefGoogle Scholar
  50. 50.
    M. Saad, A. Kasiss, Sol. Energy Mater. and Sol. Cells. 77, 415 (2003)CrossRefGoogle Scholar
  51. 51.
    J. Verschraegen, M. Burgelman, J. Penndorf, Thin Solid Films. 480, 307 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    C.S. Lao, J. Liu, P.X. Gao, L.Y. Zhang, D. Davidovic, R. Tummala, Z.L. Wang, Nano Lett. 2, 263 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    H. Elhadidy, J. Sikula, J. Franc, Semicond. Sci. Technol. 27, 015006 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    M.G. Mahesha, V.B. Kasturi, and G. K. Shivakumar, Turk J Phys. 32, 151 (2008)Google Scholar
  55. 55.
    A. Andreev, L. Grmela, P. Moravec, G. Bosman, J. Sikula, Semicond. Sci. Technol. 25, 055016 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and TechnophysicsVidyasagar UniversityMidnaporeIndia

Personalised recommendations