Applied Physics A

, 124:247 | Cite as

Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes

  • M. V. Kharlamova
  • C. Kramberger
  • M. Sauer
  • K. Yanagi
  • T. Saito
  • T. Pichler
Rapid communication

Abstract

In the present work, we have obtained metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes (SWCNTs) by density gradient separation of metallicity mixed filled nanotubes. Double-walled carbon nanotubes (DWCNTs) were obtained by annealing of filled SWCNTs in vacuum. The diameter distribution of inner tubes was analyzed by multifrequency Raman spectroscopy. The chemical transformation of nickelocene upon annealing was studied by X-ray photoelectron spectroscopy (XPS) at the Ni 2p core level. The thermally-induced transformation of nickelocene to nickel carbides and metallic nickel was revealed. The electronic properties of the filled SWCNTs and DWCNTs were investigated by XPS at the C 1s core level. By tracing the C 1s binding energy, it was shown that the annealing of nickelocene-filled SWCNTs at low temperatures (360–600 °C) led to electron doping of SWCNTs, whereas annealing at high temperatures and formation of DWCNTs (680–1200 °C) resulted in hole doping of nanotubes.

Notes

Acknowledgements

The authors acknowledge the international exchange program “The Global Human Resource Program Bridging Across Physics and Chemistry” (Tokyo Metropolitan University). K. Y. acknowledges JSPS KAKENHI Grant Number JP16H00919.

References

  1. 1.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of сarbon nanotubes. (Imperial College Press, London, 1998)CrossRefGoogle Scholar
  2. 2.
    M.V. Kharlamova, Prog. Mater. Sci. 77, 125 (2016)CrossRefGoogle Scholar
  3. 3.
    Z. Chen, J. Appenzeller, J. Knoch, Y. Lin, P. Avouris, Nano Lett. 5, 1497 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    S.Z. Bisri, J. Gao, V. Derenskyi, W. Gomulya, I. Iezhokin, P. Gordiichuk, A. Herrmann, M.A. Loi, Adv. Mater. 24, 6147 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Ding, Z. Li, J. Lefebvre, F. Cheng, G. Dubey, S. Zou, P. Finnie, A. Hrdina, L. Scoles, G.P. Lopinski, Nanoscale 6, 2328 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    D.J. Bindl, M.-Y. Wu, F.C. Prehn, M.S. Arnold, Nano Lett. 11, 455 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Holt, A.J. Ferguson, N. Kopidakis, B.A. Larsen, J. Bult, G. Rumbles, J.L. Blackburn, Nano Lett. 10, 4627 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotechnol. 1, 60 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    M.C. Hersam, Nat. Nanotechnol. 3, 387 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    K. Yanagi, H. Udoguchi, S. Sagitani, Y. Oshima, T. Takenobu, H. Kataura, T. Ishida, K. Matsuda, Y. Maniwa, ACS Nano 4, 4027 (2010)CrossRefGoogle Scholar
  11. 11.
    A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Rao, Chem. Mater. 12, 202 (2000)CrossRefGoogle Scholar
  12. 12.
    P. Corio, A.P. Santos, P.S. Santos, M.L.A. Temperini, V.W. Brar, M.A. Pimenta, M.S. Dresselhaus, Chem. Phys. Lett. 383, 475 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M.H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R.J. Kalenczuk, T. Pichler, S.R.P. Silva, Chem. Phys. Lett. 421, 129 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M.V. Kharlamova, J.J. Niu, Appl. Phys. A 109, 25 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M.V. Kharlamova, J.J. Niu, J. Exp. Theor. Phys. 115, 485 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M.V. Kharlamova, J.J. Niu, JETP Lett. 95, 314 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    L.J. Li, A.N. Khlobystov, J.G. Wiltshire, G.A.D. Briggs, R.J. Nicholas, Nat. Mater. 4, 481 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M.V. Kharlamova, C. Kramberger, T. Saito, Y. Sato, K. Suenaga, T. Pichler, H. Shiozawa, Nanoscale 9, 7998 (2017)CrossRefGoogle Scholar
  19. 19.
    M.V. Kharlamova, M. Sauer, T. Saito, S. Krause, X.J. Liu, K. Yanagi, T. Pichler, H. Shiozawa, Phys. Status Solidi B 250, 2575 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J. Sloan, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Comptes Rendus Physique 4, 1063 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    J. Sloan, S. Friedrichs, R.R. Meyer, A.I. Kirkland, J.L. Hutchison, M.L.H. Green, Inorg. Chim. Acta 330, 1 (2002)CrossRefGoogle Scholar
  22. 22.
    M.V. Kharlamova, L.V. Yashina, A.V. Lukashin, J. Mater. Sci. 48, 8412 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M.V. Kharlamova, L.V. Yashina, A.A. Eliseev, A.A. Volykhov, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.V. Lukashin, Y.D. Tretyakov, Phys. Status Solidi B 249, 2328 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    M.V. Kharlamova, Appl. Phys. A 111, 725 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    M.V. Kharlamova, L.V. Yashina, A.V. Lukashin, Appl. Phys. A 112, 297 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    H. Shiozawa, T. Pichler, C. Kramberger, A. Gruneis, M. Knupfer, B. Buchner, V. Zolyomi, J. Koltai, J. Kurti, D. Batchelor, H. Kataura, Phys. Rev. B 77, 153402 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    H. Shiozawa, T. Pichler, A. Gruneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, H. Kataura, Adv. Mater. 20, 1443 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Saito, S. Ohshima, T. Okazaki, S. Ohmori, M. Yumura, S. Iijima, J. Nanosci. Nanotechnol. 8, 6153 (2008)CrossRefGoogle Scholar
  29. 29.
    M.V. Kharlamova, C. Kramberger, K. Yanagi, M. Sauer, T. Saito, T. Pichler, Phys. Status Solidi B 254, 1700178 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    P.T. Araujo, I.O. Maciel, P.B.C. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Phys. Rev. B 77, 241403 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)CrossRefGoogle Scholar
  32. 32.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza, R. Saito, Carbon 40, 2043 (2002)CrossRefGoogle Scholar
  33. 33.
    S.D.M. Brown, P. Corio, A. Marucci, M.S. Dresselhaus, M.A. Pimenta, K. Kneipp, Phys. Rev. B 61, R5137 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    A. Jorio, A.G. Souza, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito, Phys. Rev. B 65, 155412 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T.F. Heinz, C. Thomsen, Phys. Rev. Lett. 102, 075501 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    O. Dubay, G. Kresse, Phys. Rev. B 70, 165424 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    K.S. Kim, N. Winograd, Surf. Sci. 43, 625 (1974)ADSCrossRefGoogle Scholar
  38. 38.
    B.P. Lochel, H.H. Strehblow, J. Electrochem. Soc. 131, 713 (1984)CrossRefGoogle Scholar
  39. 39.
    N. Greenwood, A. Earnshaw, Chemistry of the elements, 2nd edn. (Butterworth-Heinemann, Oxford, 1997)Google Scholar
  40. 40.
    Y.G. Leng, H.Y. Shao, Y.T. Wang, M. Suzuki, X.G. Li, J. Nanosci. Nanotechnol. 6, 221 (2006)Google Scholar
  41. 41.
    S. Sinharoy, L.L. Levenson, Thin Solid Films 53, 31 (1978)ADSCrossRefGoogle Scholar
  42. 42.
    G.J. Kovacs, I. Bertoti, G. Radnoczi, Thin Solid Films 516, 7942 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    C. Kramberger, H. Rauf, M. Knupfer, H. Shiozawa, D. Batchelor, A. Rubio, H. Kataura, T. Pichler, Phys. Rev. B 79, 195442 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    M. Sauer, H. Shiozawa, P. Ayala, G. Ruiz-Soria, X.J. Liu, A. Chernov, S. Krause, K. Yanagi, H. Kataura, T. Pichler, Carbon 59, 237 (2013)CrossRefGoogle Scholar
  45. 45.
    R. Nakanishi, R. Kitaura, P. Ayala, H. Shiozawa, K. de Blauwe, P. Hoffmann, D. Choi, Y. Miyata, T. Pichler, H. Shinohara, Phys. Rev. B 86, 115445 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    P. Ayala, R. Kitaura, C. Kramberger, H. Shiozawa, N. Imazu, K. Kobayashi, D.J. Mowbray, P. Hoffmann, H. Shinohara, T. Pichler, Mater. Express 1, 30 (2011)CrossRefGoogle Scholar
  47. 47.
    H. Shiozawa, T. Pichler, C. Kramberger, M. Rummeli, D. Batchelor, Z. Liu, K. Suenaga, H. Kataura, S.R.P. Silva, Phys. Rev. Lett. 102, 046804 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    R. P.Ayala, R. Kitaura, H. Nakanishi, P. Shiozawa,Ogawa,, H. Hoffmann, T. Shinohara, Pichler, Phys. Rev. B 83, 085407 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    M.V. Kharlamova, M. Sauer, T. Saito, Y. Sato, K. Suenaga, T. Pichler, H. Shiozawa, Nanoscale 7, 1383 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.Department of PhysicsTokyo Metropolitan UniversityTokyoJapan
  3. 3.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations