Applied Physics A

, 124:250 | Cite as

Effect of laser peening with glycerol as plasma confinement layer

  • Miho Tsuyama
  • Naoya Ehara
  • Kazuma Yamashita
  • Manabu Heya
  • Hitoshi Nakano


The effects of controlling the plasma confinement layer on laser peening were investigated by measuring the hardness and residual stress of laser-peened stainless steels. The plasma confinement layer contributes to increasing the pressure of shock waves by suppressing the expansion of the laser-produced plasma. Most previous studies on laser peening have employed water as the plasma confinement layer. In this study, a glycerol solution is used in the context of a large acoustic impedance. It is found that this glycerol solution is superior to water in its ability to confine plasma and that suitable conditions exist for the glycerol solution to act as a plasma confinement layer to achieve efficient laser peening.


  1. 1.
    K. Ding, L. Ye, Laser Shock Peening (CRC Press, Boca Raton, 2006)CrossRefGoogle Scholar
  2. 2.
    R. Fabbro, P. Peyre, L. Berthe, X. Scherpereel, J. Laser Appl. 10, 265 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    C. Montross, T. Wei, L. Ye, G. Clark, Y.W. Mai, A review. Int. J. Fatigue. 24, 1021 (2002)CrossRefGoogle Scholar
  4. 4.
    C. Correa, A. Gil-Santos, J.A. Porro, M. Diaz, J.L. Ocana, Mater. Des. 79, 106 (2015)CrossRefGoogle Scholar
  5. 5.
    J.T. Wang, Y.K. Zhang, J.F. Chen, J.Y. Zhou, K.Y. Luo, W.S. Tan, L.Y. Sun, Y.L. Lu, Mater. Sci. Eng. A. 704, 459 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Kattoura, S.R. Mammava, D. Qian, V.K. Vasudevan, Int. J. Fatigue 104, 366 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Tsuyama, T. Shibayanagi, M. Tsukamoto, N. Abe, H. Nakano, Rev. Laser Eng. 825, 37–11 (2009) (in Japanese) Google Scholar
  8. 8.
    M. Tsuyama, T. Shibayanagi, M. Tsukamoto, N. Abe, H. Nakano, Rev. Laser Eng. 134, 41–42 (2013)Google Scholar
  9. 9.
    M. Tsuyama, Y. Kodama, Y. Miyamoto, I. Kitawaki, M. Tsukamoto, H. Nakano, J. Laser Micro/Nanoeng. 227, 11–2 (2016)Google Scholar
  10. 10.
    R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Sano, N. Mukai, K. Okazaki, M. Obata, Nucl. Instrum. Methods Phys. Res. B. 121, 432 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    M.L. Sheely, Ind. Eng. Chem. 24, 1060 (1932)CrossRefGoogle Scholar
  13. 13.
    Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, Y. Ochi, Mater. Sci. Eng. A 417, 334 (2006)CrossRefGoogle Scholar
  14. 14.
    Y. Sano, K. Akita, K. Masaki, Y. Ochi, I. Altenberger, B. Scholtes, J. Laser Micro/Nanoeng. 1, 161 (2006)CrossRefGoogle Scholar
  15. 15.
    L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, EPJ. Appl. Phys. 3, 215 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    B. Wu, Y.C. Shin, Appl. Phys. Lett. 88, 041116 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    A. Shima, K. Nakajima, J. F. M. 369, 80–2 (1977)Google Scholar
  18. 18.
    Y. Nagasawa, Y. Nakagawa, J. Kenmochi, T. Okada, Cryobiol. Cryotech. 49, 87 (2003)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringKindai UniversityHigashi-osakaJapan
  2. 2.Faculty of EngineeringOsaka-sangyo UniversityDaitoJapan

Personalised recommendations