Applied Physics A

, 124:245 | Cite as

Electrical and optical characterizations of InAs/GaAs quantum dot solar cells

  • Im Sik Han
  • Seung Hyun Kim
  • Jong Su Kim
  • Sam Kyu Noh
  • Sang Jun Lee
  • Hooggyun Kim
  • Deok-Kee Kim
  • Jae-Young Leem
Article
  • 4 Downloads

Abstract

The electrical and optical characterizations of InAs/GaAs quantum dot solar cells (QDSCs) were investigated by frequency dependent capacitance–voltage (CV) measurements and photoreflectance (PR) spectroscopy. The CV results confirmed that the frequency dependent junction capacitance (Cj) of QDSC is sensitive to the carrier exhaustion process through trapping and recapturing in the strain-induced defects and QD states caused by the interface strain between InAs and GaAs materials. As a result, at a low frequency (≤ 200 kHz), the Cj of the QDSCs decreased with increasing InAs deposition thickness (θ), leading to the decrease in carrier concentration (Nd) of the n-GaAs absorber layer due to the carrier losses processes caused by the trapping and re-capturing in the defects and the relatively large QDs. At θ ≤ 2.0 ML, the p-n junction electric field strength (Fpn) of the QDSCs which was evaluated by PR spectra decreased with increasing excitation photon intensity (Iex) due to the typical field screening effect in the SC structure. On the other hand, the Fpn of QDSCs with θ ≥ 2.5 ML approached a constant value with a relatively high Iex, which suggests that the decrease in photo-generated carriers in the QDSC was caused by the re-capturing and trapping process.

Notes

Acknowledgements

This study was partially supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A6A1031189). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20163030013380).

References

  1. 1.
    A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, J.L. Pearson, A. McKee, J. Appl. Phys. 96, 903–909 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    K.A. Sablon, J.W. Little, V. Mitin, A. Sergeev, N. Vagidov, K. Reinhardt, Nano Lett. 11, 2311–2317 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    K. Tanabe, D. Guimard, D. Bordel, Y. Arakawa, Appl. Phys. Lett. 100, 193905 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    R.P. Smith, I.S. Han, J.S. Kim, S.K. Noh, J.-Y. Leem, J. Korean. Phys. Soc. 64, 895–899 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    I.S. Han, J.S. Kim, J.O. Kim, S.K. Noh, S.J. Lee, Curr. Appl. Phys. 16, 587–592 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, S. Niki, Sol. Energy Mater. 95, 163–166 (2011)CrossRefGoogle Scholar
  7. 7.
    W.-S. Liu, H.-C. Lin, R.-Y. Liu, Prog. Photovolt: Res. Appl. 25, 76–86 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Leonard, K. Pond, P.M. Petroff, Phys. Rev. B. 50, 11687 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Willis, J.A.R. Dimmock, F. Tutu, H.Y. Liu, M.G. Peinado, H.E. Assender, A.A.R. Watt, I.R. Sellers, Sol. Energy Mater. Sol. Cells. 102, 142–147 (2012)CrossRefGoogle Scholar
  10. 10.
    R.B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L.F. Lester, D.L. Huffaker, Appl. Phys. Lett. 91, 243115 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    S.M. Hubbard, C.D. Cress, C.G. Bailey, R.P. Raffaelle, S.G. Bailey, D.M. Wilt, Appl. Phys. Lett. 92, 123512 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    H.F. Lu, L. Fu, G. Jolley, H.H. Tan, S.R. Tatavarti, C. Jagadish, Appl. Phys. Lett. 98, 183509 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Sellai, P. Kruszewski, A. Mesli, A.R. Peaker, M. Missous, J. Nanophoton. 6, 063502 (2012)CrossRefGoogle Scholar
  14. 14.
    M.C. Wagener, P.J. Carrington, J.R. Botha, A. Krier, J. Appl. Phys. 115, 014302 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    I.S. Han, R.P. Smith, J.S. Kim, S.K. Noh, S.J. Lee, C.-L. Lee, J.-Y. Leem, Sol. Energy Mater. Sol. Cells. 155, 70–78 (2016)CrossRefGoogle Scholar
  16. 16.
    C.W. Sohn, I.S. Han, R.P. Smith, J.S. Kim, S.K. Noh, H. Choi, J.-Y. Leem, J. Korean Phys. Soc. 64, 1031–1035 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    D.T.J. Hurle, J. Appl. Phys. 107, 121301 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    A. Varghese, M. Yakimov, V. Tokranov, V. Mitin, K. Sablon, A. Sergeev, S. Oktyabrsky, Nanoscale. 8, 7248 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    A.D. Utrilla, D.F. Reyes, J.M. Llorens, I. Artacho, T. Ben, D. González, Ž Gačević, A. Kurtz, A. Guzman, A. Hierro, J.M. Ulloa, Sol. Energy Mater. Sol. Cells. 159, 282–289 (2017)CrossRefGoogle Scholar
  20. 20.
    T. Li, M. Dagenais, Prog. Photovolt: Res. Appl. 23, 997–1002 (2015)CrossRefGoogle Scholar
  21. 21.
    D. Chenvidhya, K. Kirtikara, C. Jivacate, Sol. Energy Mater. Sol. Cells. 86, 243–251 (2005)CrossRefGoogle Scholar
  22. 22.
    J. Millman, C.C. Halkias, Integrated electronics (McGraw Hill, Kogakusha Ltd., Tokyo) pp. 753–754Google Scholar
  23. 23.
    M.S. Suresh, Sol. Energy Mater. Sol. Cells. 43, 21–28 (1996)CrossRefGoogle Scholar
  24. 24.
    J. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre, O. Vatel, Appl. Phys. Lett. 64, 196 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    J.S. Kim, J.S. Kim, Korean Phys. Soc. 49, 195–198 (2006)Google Scholar
  26. 26.
    G.S. Kim, S.M. Jeon, M.Y. Cho, H.Y. Choi, D.Y. Kim, M.S. Kim, Y.S. Kwon, J.W. Choe, J.S. Kim, J.Y. Leem, ACTA PHYSICA POLONICA A. 118, 673–676 (2010)CrossRefGoogle Scholar
  27. 27.
    H. Toyoshima, T. Shitara, P.N. Fawcett, J. Zhang, J.H. Neave, B.A. Joyce, J. Appl. Phys. 73, 2333 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    A. A.Turut.K.Ejderha Karabulut, and N.Bıyıklı, Mater. Sci. Semicond. Process. 39, 400–407 (2015)CrossRefGoogle Scholar
  29. 29.
    H. Saghrouni, S. Jomni, A. cherif, W. Belgacem, L. Beji, J. Alloys Compd. 676, 127–134 (2016)CrossRefGoogle Scholar
  30. 30.
    H. Doğan, N. Yıldırımb, İ Orak, S. Elagöz, A. Turut, Phys. B. 457, 28–53 (2015)ADSGoogle Scholar
  31. 31.
    H. Song, J.S. Kim, E.K. Kim, S.J. Lee, S.K. Noh, J. Nanosci. Nanotechnol. 11, 6504–6509 (2011)CrossRefGoogle Scholar
  32. 32.
    J.F. Chen, C.H. Yang, R.M. Hsu, U.S. Wang, J. Appl. Phys. 105, 063705 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    W.G. Oldham, S.S. Naik, Solid-State Electron. 15, 1085 (1972)ADSCrossRefGoogle Scholar
  34. 34.
    N.M. Haegel, Appl. Phys. A. 53, 1–7 (1991)ADSCrossRefGoogle Scholar
  35. 35.
    N.C. Chen, P.Y. Wang, J.F. Chen, Appl. Phys. Lett. 72, 1081 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    J.F. Chen, J.S. Wang, P.Y. Wang, H.Z. Wong, Appl. Phys. Lett. 75, 1092 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    J.F. Chen, R.S. Hsiao, W.D. Huang, Y.H. Wu, L. Chang, J.S. Wang, J.Y. Chi, Appl. Phys. Lett. 88, 233113 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    J.F. Chen, C.C. Ross, C.H. Chen, Y.F. Chiang, Y.H. Chen, L. Wu, Chang, Appl. Phys. Lett. 97, 092110 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    H.C. Liu, L. Li, M. Buchanan, Z.R. Wasilewski, A.K. Jonscher, IEEE Trans. Electron Devices. 45, 2196–2206 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    M. Nowaczqk, G. Sęk, J. Misiewicz, B. Ściana, D. Radziewicz, M. Tłaczała, Thin Solid Films. 380, 243–245 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    S.J. Lee, H.-J. Jo, M.G. So, C.W. Sohn, I.S. Han, J.S. Kim, I.-H. Bae, S.J. Lee, S.K. Lee, H. Noh, J.-Y. Choi, Leem, J. Korean Phys. Soc. 66, 667–671 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    J.S. Wang, J.F. Chen, J.L. Huang, P.Y. Wang, X.J. Guo, Appl. Phys. Lett. 77, 3027 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    D.P. Wang, C.C. Chen, T.L. Shen, T.M. Hsu, and W.C. Lee, J. Appl. Phys. 80, 6980 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Im Sik Han
    • 1
    • 5
  • Seung Hyun Kim
    • 1
  • Jong Su Kim
    • 1
  • Sam Kyu Noh
    • 2
  • Sang Jun Lee
    • 2
  • Hooggyun Kim
    • 3
  • Deok-Kee Kim
    • 3
  • Jae-Young Leem
    • 4
  1. 1.Department of PhysicsYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Division of Convergence TechnologyKorea Research Institute of Standards and ScienceDaejeonRepublic of Korea
  3. 3.Department of Electrical EngineeringSejong UniversitySeoulRepublic of Korea
  4. 4.School of Nano Engineering, Center for Nano ManufacturingInje UniversityGimhaeRepublic of Korea
  5. 5.Department of Electronic and Electrical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations