Skip to main content
Log in

Magnetoimpedance and magnetooptical properties of electrodeposited NiFeMo ribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We produced NiFeMo ribbons by electrodeposition technique under applied currents ranging from 40 to 240 mA. The SEM analysis showed a uniform and crack-free coating. Then, we measured the transverse and longitudinal magnetoimpedance of ribbons. We also obtained the hysteresis loops of the ribbons by means of magnetooptical Kerr effect to investigate their magnetic properties. The result showed that the increase in deposition current density caused a decline in the magnetic softness of the ribbons so that some of the ribbons exhibited an exchange spring effect. The magnetic hardening also caused a reduction in the magnetoimpedance response. We also theoretically calculated the susceptibility of a ribbon by considering the random magnetic anisotropy. The multi-peak behavior of susceptibility is in agreement with the multi-peak behavior of magnetoimpedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.K. Das, P. Banerji, S.K. Mandal, Giant magnetoimpedance intrinsic impedance and voltage sensitivity of rapidly solidified Co\(_{66}\)Fe\(_2\)Cr\(_4\)Si\(_{13}\)B\(_{15}\) amorphous wire for highly sensitive sensors applications. Appl. Phys. A 122, 939 (2016)

    Article  ADS  Google Scholar 

  2. G.L.S. Vilela, J.G. Monsalve, A.R. Rodrigues, A. Azevedo, F.L.A. Machado, Giant magnetoimpedance effect in a thin-film multilayer meander-like sensor. J. Appl. Phys. 121, 124501 (2017)

    Article  ADS  Google Scholar 

  3. X. Sun, J. Du, Z. Zhu, J. Wang, Q. Liu, Enhanced GMI effect in NiZn-ferrite-modified Fe-based amorphous ribbons. Appl. Phys. A 119, 1277–1281 (2015)

    Article  ADS  Google Scholar 

  4. E.F. Silva, R.B. da Silva, M. Gamino, A.M.H. de Andrade, M. Vazquez, M.A. Correa, F. Bohn, Asymmetric magnetoimpedance effect in ferromagnetic multilayered biphase films. J. Magn. Magn. Mater. 393, 260–264 (2015)

    Article  ADS  Google Scholar 

  5. Y. Honkura, Development of amorphous wire type MI sensors for automobile use. J. Magn. Magn. Mater. 249, 375–381 (2002)

    Article  ADS  Google Scholar 

  6. G.V. Kurlyandskaya, M.L. Sanchez, B. Hernando, V.M. Prida, P. Gorria, M. Tejedor, Giant-magnetoimpedance-based sensitive element as a model for biosensors. Appl. Phys. Lett. 82, 3053–3055 (2003)

    Article  ADS  Google Scholar 

  7. T. Wang, Y. Zhou, C. Lei, J. Lei, Z. Yang, Development of an ingenious method for determination of dynabeads protein A based on a giant magnetoimpedance sensor. Sens. Actuat B Chem. 186, 727–733 (2013)

    Article  Google Scholar 

  8. M. Vazquez, Soft magnetic wires. Phys. B 299, 302–313 (2001)

    Article  ADS  Google Scholar 

  9. C. Tannous, J. Gieraltowski, Giant magneto impedance and its applications. J. Mater. Sci. Mater. Electron. 15, 125–133 (2004)

    Article  Google Scholar 

  10. A. Zhukov, A. Chizhik, M. Ipatov, A. Talaat, J.M. Blanco, A. Stupakiewicz, V. Zhukova, Giant magnetoimpedance effect and domain wall dynamics in Co-rich amorphous microwires. J. Appl. Phys. 117, 043904 (2015)

    Article  ADS  Google Scholar 

  11. V. Zhukova, A. Talaat, M. Ipatov, J.J. Del Val, L. Gonzalez-Legarreta, B. Hernando, A. Zhukov, Effect of nanocrystallization on magnetic properties and GMI effect of Fe-rich microwires. J. Electron. Mater. 43, 4540–4547 (2014)

    Article  ADS  Google Scholar 

  12. R. Mardani, A. Amirabadizadeh, M. Ghanaatshoar, Angular dependence of giant magneto impedance and magnetic characteristic of Co-based wire in different magnetic field ranges. Mod. Phys. Lett. B 28, 1450197 (2014)

    Article  ADS  Google Scholar 

  13. A. Zhukov, M. Ipatov, M. Churyukanova, A. Talaat, J.M. Blanco, V. Zhukova, Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials. J. Alloys. Compd. (2017)

  14. L. Xie, X. Li, J.T. Zou, H.L. Pan, W.H. Xie, Z.J. Zhao, Optimized giant magneto-impedance effect in electroless-deposited NiFeP/Cu composite wires. Surf. Coat. Technol (2017)

  15. R. Kammouni, G.V. Kurlyandskaya, M. Vázquez, S.O. Volchkov, Magnetic properties and magnetoimpedance of short CuBe/CoFeNi electroplated microtubes. Sens. Actuat. A 248, 155–161 (2016)

    Article  Google Scholar 

  16. T. Eggers, A. Leary, M. McHenry, J. Marcin, I. Škorvánek, H. Srikanth, M.H. Phan, Correlation between domain structure, surface anisotropy and high frequency magneto-impedance in Joule annealed CoFe-based melt-spun ribbons. J. Alloys. Compd. 682, 799–804 (2016)

    Article  Google Scholar 

  17. M. Banerjee, R. Banerjee, A.K. Majumdar, A. Mookerjee, B. Sanyal, A.K. Nigam, Magnetism in NiFeMo disordered alloys: experiment and theory. Phys. B 405, 4287–4293 (2010)

    Article  ADS  Google Scholar 

  18. D. Oleksakova, P. Kollar, J. Fuzer, M. Kusy, S. Roth, K. Polanski, The influence of mechanical milling on structure and soft magnetic properties of NiFe and NiFeMo alloys. J. Magn. Magn. Mater. 316, 838–841 (2007)

    Article  ADS  Google Scholar 

  19. G. Nabiyouni, S. Saeidi, I. Kazeminezhad, Magnetic and nanostructural characteristics of electrodeposited supermalloy (Ni–Fe–Mo) thin films. Res. Rev. Mater. Sci. Chem. 1, 1–14 (2012)

    Google Scholar 

  20. J. Velleuer, A. Mun, H. Yakabchuka, C. Schiefer, A. Hackl, E. Kisker, Giant magneto impedance in electroplated NiFeMo/Cu microwires. J. Magn. Magn. Mater. 311, 651–657 (2007)

    Article  ADS  Google Scholar 

  21. A. Munoz, C. Schiefer, T. Nentwig, W. Man, E. Kiske, Magneto impedance of electroplated NiFeMo/Cu microwires for magnetic sensors. J. Appl. Phys. 40, 5013–5020 (2007)

    Google Scholar 

  22. Z.Q. Qiu, S.D. Bader, Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 71, 1243–1255 (2000)

    Article  ADS  Google Scholar 

  23. M. Ghanaatshoar, N. Azad, M.H. Banitaba, B. Shokri, Giant magnetoimpedance effect of ac–dc Joule annealed electroplated NiFe/Cu composite wires. Phys. Status Solid C 8, 3055–3058 (2011)

    Article  Google Scholar 

  24. W.P. Taylor, M. Schneider, H. Baltes, M.G. Allen, A NiFeMo electroplating bath for micromachined structures. Electrochem. Solid State Lett. 2, 624–626 (1999)

    Article  Google Scholar 

  25. M. Banerjee, A.K. Majumdar, S. Rai, P. Tiwari, G.S. Lodha, A. Banerjee, K.G.M. Nair, J. Sarkar, R.J. Choudhary, D.M. Phase, Room temperature ferromagnetism down to 10 nanometer Ni–Fe–Mo alloy films. Thin Solid Films 545, 358–390 (2013)

    Article  Google Scholar 

  26. H. Wang, J. Yan, S. Li, X. Zhang, Q. Jiang, Noble-metal-free NiFeMo nanocatalyst for hydrogen generation from the decomposition of hydrous hydrazine. J. Mater. Chem. A 3, 121–124 (2014)

    Article  Google Scholar 

  27. H. Seet, X. Li, Z. Zhao, L. Wong, H. Zheng, K. Lee, Current density effect on magnetic properties of nanocrystalline electroplate Ni\(_{80}\)Fe\(_{20}\)/Cu composite wires. J. Magn. Magn. Mater. 302, 113–117 (2006)

    Article  ADS  Google Scholar 

  28. M.A. Islam, M. Moniruzzaman, Anomalous electrodeposition of Fe–Ni alloy coating from simple and complex baths and its magnetic property. Iium Eng. J. 10, 108–122 (2009)

    Google Scholar 

  29. A. Chizhik, C. Garcia, A. Zhukov, J. Gonzalez, L. Dominguez, J.M. Blancob, Investigation of surface magnetization reversal in Co-rich amorphous microwires with magneto-impedance effect. Phys. B 384, 5–8 (2006)

    Article  ADS  Google Scholar 

  30. V. Setoodeh, S.I. Hosseini, M. Ghanaatshoar, B. Shokri, Optical exchange spring effect in RF-annealed Fe-based amorphous ribbons. Phys. B 408, 39–42 (2013)

    Article  ADS  Google Scholar 

  31. E. Goto, N. Yahashi, T. Miyashita, K. Nakagawa, Magnetization and switching characteristics of composite thin films. J. Appl. Phys. 36, 2951–2958 (1965)

    Article  ADS  Google Scholar 

  32. G. Kotagiri, S.D. Ramarao, G. Markandeyulu, Magnetoimpedance studies on laser and microwave annealed Fe\(_{66}\)Ni\(_7\)si\(_7\)B\(_{20}\) ribbons. J. Magn. Magn. Mater. 382, 43–48 (2015)

    Article  ADS  Google Scholar 

  33. Z. Zhou, Y. Zhou, Y. Cao, The investigation of giant magnetoimpedance effect in meander NiFe/Cu/NiFe film. J. Magn. Magn. Mater. 320, 967–970 (2008)

    Article  ADS  Google Scholar 

  34. V. Zhukova, A. Zhukov, K.L. Garcia, V. Kraposhin, A. Prokoshin, J. Gonzalez, M. Vazquez, Magnetic properties and GMI of soft melt-extracted magnetic amorphous fibers. Sens. Actuat. A 106, 225–229 (2003)

    Article  Google Scholar 

  35. D. Atkinson, P.T. Squire, Phenonemological model for magnetoimpedance in soft ferromagnets. J. Appl. Phys. 83, 6569–6571 (1998)

    Article  ADS  Google Scholar 

  36. V. Panina, K. Mohri, T. Uchiyama, M. Noda, K. Bushida, Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 31, 1249–1260 (1995)

    Article  ADS  Google Scholar 

  37. F.L.A. Machado, M. Rezende, A theoretical model for the giant magnetoimpedance in ribbons of amorphous soft-ferromagnetic alloys. J. Appl. Phys. 79, 6558–6560 (1996)

    Article  ADS  Google Scholar 

  38. R.L. Sommer, C.L. Chien, Giant magnetoimpedance effects in Metglas 2705M. J. Appl. Phys. 79, 5139–5141 (1996)

    Article  ADS  Google Scholar 

  39. S.Q. Xiao, Y.H. Liu, Y.Y. Dai, L. Zhang, S.X. Zhou, G.D. Liu, Giant magnetoimpedance effect in sandwiched films. J. Appl. Phys. 35, 4127–4130 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghanaatshoar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalhor, S., Ghanaatshoar, M. & Aliaskarisohi, S. Magnetoimpedance and magnetooptical properties of electrodeposited NiFeMo ribbons. Appl. Phys. A 124, 229 (2018). https://doi.org/10.1007/s00339-018-1636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1636-z

Navigation