Advertisement

Applied Physics A

, 124:117 | Cite as

Spatial localization of nanoparticle growth in photoinduced nanocomposites

  • Anton A. Smirnov
  • Alexander Pikulin
  • Nikita Bityurin
Article
  • 98 Downloads

Abstract

Photoinduced nanocomposites are the polymer materials where the nanoparticles can be generated by the light irradiation. The single atoms of metal are formed due to the photoreduction of the metal-containing precursor added to the polymer matrix. Then the atoms precipitate into the nanoparticles (NPs). Similarly, semiconductor NPs are assembled from the monomer species such as CdS, which can be released due to the photodestruction of the appropriate precursor. We analyze theoretically the possibility of spatial confinement of growing nanoparticles in a domain where the elementary species are generated by a three-dimensionally localized source. It is shown that the effective confinement can be achieved only if the size of the generation domain exceeds some critical spatial scale determined by the parameters of the system. The confinement is provided by the trapping of the diffusing elementary species by the growing nanoparticles. The proposed model considers the irreversible particle growth, typical for the noble metals. Both the nucleation and the particle growth processes are suggested to be diffusion controlled.

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (RSF) under Project No. 14-19-01702.

References

  1. 1.
    N.M. Bityurin, Fundamentals of Laser–Assisted Micro- and Nanotechnologies, eds. by V.P. Veiko, V.I. Konov eds. (Springer International Publishing, Switzerland, 2014), pp. 293–313CrossRefGoogle Scholar
  2. 2.
    A. Alexandrov, L. Smirnova, N. Yakimovich, N. Sapogova, L. Soustov, A. Kirsanov, N. Bityurin, Appl. Surf. Sci. 248, 181–184 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A. Athanassiou, D. Fragouli, F. Villafiorita, A. Milionis, F. Spano, I. Bayer, R. Cingolani, in Recent Advances in Nanofabrication Techniques and Applications, ed. by B. Cui (InTech, 2011), p. 289Google Scholar
  4. 4.
    N. Bityurin, A. Alexandrov, A. Afanasiev, N. Agareva, A. Pikulin, N. Sapogova, L. Soustov, E. Salomatina, E. Gorshkova, N. Tsverova, L. Smirnova, Appl. Phys. A 112, 135–138 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    N.O. Yakimovich, N.V. Sapogova, L.A. Smirnova, A.P. Aleksandrov, T.A. Gracheva, A.V. Kirsanov, N.M. Bityurin, Russ. J. Phys. Chem. B 2, 128–134 (2006)Google Scholar
  6. 6.
    M. Alsawafta, S. Badilescu, A. Paneri, V.-V. Truong, M. Packirisamy, Polymers 3(4), 1833–1848 (2011)CrossRefGoogle Scholar
  7. 7.
    E. Yilmaz, S. Suzer, Appl. Surf. Sci. 256(22), 6630–6633 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Z.-B. Sun, X.-Z. Dong, W.-Q. Chen, S. Nakanishi, X.-M. Duan, S. Kawata, Adv. Mater. 20, 914–919 (2008)CrossRefGoogle Scholar
  9. 9.
    N. Agareva, A.A. Smirnov, A. Afanasiev, S. Sologubov, A. Markin, E. Salomatina, L. Smirnova, N. Bityurin, Materials 8, 8691–8700 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Bansal, M.T. Sajjad, F. Antolini, L. Stroea, P. Gečys, G. Raciukaitis, P. André, A. Hirzer, V. Schmidt, L. Ortolani, S. Toffanin, S. Allard, U. Scherf, I.D.W. Samuel, Nanoscale 7, 11163 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Smirnov, A. Afanasiev, N. Ermolaev, N. Bityurin, Opt. Mater. Express 6, 290–295 (2016)CrossRefGoogle Scholar
  12. 12.
    A.K. Bansal, M.T. Sajjad, F. Antolini, L. Stroea, P. Gečys, G. Raciukaitis, P. André, A. Hirzer, V. Schmidt, L. Ortolani, S. Toffanin, S. Allard, U. Scherfh, I.D.W. Samuel, Nanoscale 7, 11163 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    A. Camposeo, M. Polo, A.A.R. Neves, D. Fragouli, L. Persano, S. Molle, A.M. Laera, E. Piscopiello, V. Resta, A. Athanassiou, R. Cingolani, L. Tapfer, D. Pisignano, J. Mater. Chem. 22, 9787 (2012)CrossRefGoogle Scholar
  14. 14.
    V. Resta, A.M. Laera, A. Camposeo, E. Piscopiello, L. Persano, D. Pisignano, L. Tapfer, J. Phys. Chem. C 116, 25119–25125 (2012)CrossRefGoogle Scholar
  15. 15.
    Q. Hu, X.-Z. Sun, C.D.J. Parmenter, M.W. Fay, E.F. Smith, G.A. Rance, Y. He, F. Zhang, Y. Liu, D. Irvine, C. Tuck, R. Hague, R. Wildman, Sci. Rep. 7, 17150 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    E. Blasco, J. Müller, P. Müller, V. Trouillet, M. Schön, T. Scherer, C. Barner-Kowollik, M. Wegener, Adv. Mater. 28, 3592 (2016)CrossRefGoogle Scholar
  17. 17.
    A.G. Vitukhnovsky, D.A. Chubich, S.P. Eliseev, V.V. Sychev, D.A. Kolymagin, A.S. Selyukov, J. Russ. Laser Res. 38, 375 (2017)CrossRefGoogle Scholar
  18. 18.
    G.M. Burrow, T.K. Gaylord, Micromachines 2, 221 (2011)CrossRefGoogle Scholar
  19. 19.
    G.-C. He, M.-L. Zheng, X.-Z. Dong, F. Jin, J. Liu, X.-M. Duan, Z.-S. Zhao, Sci. Rep. 7, 41757 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    S. Scalbi, V. Fantin, F. Antolini, J. Clean. Prod. 142, 3702 (2017)CrossRefGoogle Scholar
  21. 21.
    A.A. Smirnov, A. Pikulin, N. Sapogova, N. Bityurin, Micromachines 5, 1202–1218 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Afanasiev, V. Bredikhin, A. Pikulin, I. Ilyakov, B. Shishkin, R. Akhmedzhanov, N. Bityurin, Appl. Phys. Lett. 106, 183102 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    N. Bityurin, N. Ermolaev, A.A. Smirnov, A. Afanasiev, N. Agareva, T. Koryukina, V. Bredikhin, V. Kamenskiy, A. Pikulin, N. Sapogova, Appl. Phys. A 122, 193 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    A.O. Govorov, G.W. Bryant, W. Zhang, T. Skeini, J. Lee, N.A. Kotov, J.M. Slocik, R.R. Naik, Nanoletters 6, 984 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    N. Sapogova, N. Bityurin, Appl. Surf. Sci. 255, 9613–9616 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    M.-C. Daniel, D. Austruc, Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
  27. 27.
    V.V. Slezov, Kinetics of First-order Phase Transitions (Wiley, Hoboken, 2009)CrossRefGoogle Scholar
  28. 28.
    N. Sapogova, A. Pikulin, A.A. Smirnov, N. Bityurin, Phys. Chem. Chem. Phys. 18, 32921 (2016)CrossRefGoogle Scholar
  29. 29.
    N. Arnold, B. Luk’yanchuk, N. Bityurin, Appl. Surf. Sci. 127–129, 184–192 (1998)CrossRefGoogle Scholar
  30. 30.
    N. Bityurin, B.S. Luk’yanchuk, M.H. Hong, T.C. Chong, Chem. Rev. 103, 519–552 (2003)CrossRefGoogle Scholar
  31. 31.
    S.I. Anisimov, B.S. Luk’yanchuk, Phys. Usp. 45, 293–324 (2002)CrossRefGoogle Scholar
  32. 32.
    S.I. Anisimov, N.M. Bityurin, B.S. Luk’yanchuk, Photo-excited processes, diagnostics and applications, ed. by A. Peled ed. (Kluwer Acad. Publ., Dortrecht, Boston, 2003), pp. 121–159Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations