Applied Physics A

, 124:115 | Cite as

Effect of copper phthalocyanine thickness on surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction

  • P. R. Sekhar Reddy
  • V. Janardhanam
  • I. Jyothi
  • Cirandur Sri Harsha
  • V. Rajagopal Reddy
  • Sung-Nam Lee
  • Jonghan Won
  • Chel-Jong Choi


Effects of the thickness of copper phthalocyanine (CuPc) film (2, 5, 10, 15, 20, 30 and 40 nm) on the surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction have been investigated. The optical band gap of CuPc film was increased with increase in the thickness of the CuPc film. The electrical properties of the Au/n-Si Schottky junction and Au/CuPc/n-Si heterojunctions were characterized by current–voltage (I–V) and capacitance–voltage (C–V) measurements. The barrier height, ideality factor and series resistance were estimated based on the I–V, Cheung’s and Norde’s methods. The barrier heights increased with increasing CuPc interlayer thickness up to 15 nm and remained constant for thickness above 20 nm, associated with the incapability of the generated carriers to reach the interface. The discrepancy in the barrier heights obtained from I–V and C–V measurements indicates the presence of barrier inhomogeneity at the interface as evidenced by higher ideality factor values. It can be concluded that the electrical properties of Au/n-Si Schottky junction can be significantly altered with the variation of CuPc thickness as interlayer.



This work was supported by the National Research Foundation of Korea (NRF) Grant (NRF-2017R1A2B2003365) funded by the Ministry of Education, Republic of Korea, and by a Grant from the R&D Program for Industrial Core Technology (Grant No. 10045216) funded by the Ministry of Trade, Industry and Energy, Republic of Korea.


  1. 1.
    M.K. Hudait, S.B. Krupanidhi, Solid State Electron 44(6), 1089–1097 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    M. Knupfer, H. Peisert, Phys. Stat. Sol 201(6), 1055–1074 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    I. Jyothi, V. Janardhanam, V. Rajagopal Reddy, C.-J. Choi, Superlattice Microstruct 75, 806–817 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    S. Aydogan, U. Incekara, A.R. Deniz, A. Turut, Solid State Commun. 150(33–34), 1592–1596 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    M. Soylu, I.S. Yahia, F. Yakuphanoglu, W.A. Farooq, J. Appl. Phys 110(7), 074514 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    V. Janardhanam, I. Jyothi, S.-H. Yuk, C.-J. Choi, H.-J. Yun, J. Won, W.-G. Hong, S.-N. Lee, V.R. Reddy, J. Vac. Sci. Technol. B 35(2), 021212 (2017)CrossRefGoogle Scholar
  7. 7.
    L. Zihong, M. Kobayashi, B.C. Paul, B. Zhenan, Y. Nishi, Phys. Rev. B 82(3), 035311 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    R. Prabakaran, E. Fortunato, R. Martins, I. Ferreira, J. Non Cryst. Solids 354(19–25), 2892–2896 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    A.W. Snow, W.R. Barger, in Phthalocyanines: Properties and Applications, ed. by C.C. Leznoff, A.B.P. Lever eds. (VCH Publishers, New York, 1989) (Cha. 5) Google Scholar
  10. 10.
    S.R. Forrest, Chem. Rev. 97(6) 1793–1896 (1997)CrossRefGoogle Scholar
  11. 11.
    A. Ashok Kumar, V. Rajagopal Reddy, V. Janardhanam, M.-W. Seo, H. Hong, K.-S. Shin, C.-J. Choi, J. Electrochem. Soc 159(1), H33–H37 (2012)CrossRefGoogle Scholar
  12. 12.
    I. Jyothi, V. Janardhanam, Y.-R. Lim, V.R. Reddy, K.-S. Ahn, C.-J. Choi, Mater. Sci. Semicond. Process 30, 420–428 (2015)CrossRefGoogle Scholar
  13. 13.
    P. R. Sekhar Reddy, V. Janardhanam, I. Jyothi, H.-S. Chang, S.-N. Lee, M.S. Lee, V. Rajagopal Reddy, C.-J. Choi, Superlattices Microstruct. 111, 506–517 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    J.Y. Koay, K.A.M. Sharif, S.A. Rahman, Thin Solid Films 517(17), 5298–5300 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    H.E. Lapa, A. Kökce, M. Al-Dharob, İ Orak, A.F. Özdemir, S. Altındal, Eur. Phys. J. Appl. Phys 80(1), 10101 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    H.A. Cetinkara, M. Saglam, A. Turut, N. Yalcin, Eur. Phys. J. Appl. Phys 6(1), 89–94 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    N. Padma, S. Sen, V. Sudarsan, C.A. Betty, Superlattices Microstruct. 86, 536545 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Arjomandi, D. Raoufi, f Ghamari, J. Phys. Chem. C 120(32), 18055–18065 (2016)CrossRefGoogle Scholar
  19. 19.
    N. Akin, Y. Ozen, H.I. Efkere, M. Cakmak, S. Ozcelik, Surf. Interface Anal. 47(1), 93–98 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Hao, J. Ma, D. Zhang, T. Yang, H. Ma, Y. Yang, C. Cheng, J. Huang, Appl. Surf. Sci 183(1–2), 137–142 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    K.H. Kim, R.A. Wibowo, B. Munir, Mater. Lett. 60, 1931 (2006)CrossRefGoogle Scholar
  22. 22.
    S.H. Venkatachalam, F.M.B. Nanjo, K. Hassan, M. Kawasaki, T. Kanakubo, T. Aizawa, T. Aida, T. Ebina, Mater. Lett. 518(23), 6891–6896 (2010)Google Scholar
  23. 23.
    H.B. Zhan, M.Q. Wang, W.Z. Chen, Mater. Lett. 55(1), 97–103 (2002)CrossRefGoogle Scholar
  24. 24.
    H. Zhan, W. Chen, J. Chen, M. Wang, Mater. Lett. 57(9–10), 1483–1488 (2003)CrossRefGoogle Scholar
  25. 25.
    E. Armengol, A. Corma, V. Fornes, H. Garcfa, P. Prime, Appl. Catal. A Gen. 181(2), 305–312 (1999)CrossRefGoogle Scholar
  26. 26.
    S. Suresh Rajaputra, V.P. Vallurupalli, Singh, J. Mater. Sci. Mater. Electron 18(11), 1147–1150 (2007)CrossRefGoogle Scholar
  27. 27.
    C.C. Leznoff, A.B.P. Lever, Phthalocyanines: Properties and Applications, vol 3 (VCH, New York, 1993)Google Scholar
  28. 28.
    I.S. Yahia, V. Ganesh, M. Shkir, S. AlFaify, H.Y. Zahran, H. Algarni, M.M. Abutalib, A. Attieh, A.M. Al-Ghamdi, A.M. El-Naggar, AlBassam, Phys. B 496, 9–14 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    M. Shaji Varghese, E.J. Iype, C.S. Mathew, Menon, Mater. Lett. 56(6), 1078–1083 (2002)CrossRefGoogle Scholar
  30. 30.
    S.A. Aly, A.A. Akl, Chalcogenide Lett. 12(10), 489–496 (2015)Google Scholar
  31. 30.
    A.E.B. Alwan, O.M. Sami, M.A. Algradee, M.M. Hafith, M.A.A. Rahim, World J. Cond. Mat. Phys. 5, 220–231 (2015)ADSGoogle Scholar
  32. 31.
    M. Ben Rabeha, N. Khedmia, M.A. Fodhaa, M. Kanzaria, Energy Procedia 44, 52–60 (2014)CrossRefGoogle Scholar
  33. 33.
    D.C. Sati, R. Kumar, R.M. Mehra, Turk J. Phys. 30, 519–527 (2006)Google Scholar
  34. 34.
    A.S. Solieman, M.H. Hafiz, A.-H.A.A. Sehly, A.-N.A. Alfaqeer, J. Taibah Univ. Sci. 8(3), 282–288 (2014)CrossRefGoogle Scholar
  35. 35.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts. (Clarendon, Oxford, 1988)Google Scholar
  36. 36.
    M.S. Tyagi, Introduction to Semiconductor Materials and Devices. (Wiley, New York, 1991)Google Scholar
  37. 37.
    K.K. Kwok, Complete Guide to Semiconductor Devices. (McGraw-Hill, New York, 1995)Google Scholar
  38. 38.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49(2), 85–87 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    H. Norde, J. Appl. Phys. 50, 5052–5053 (1979)ADSCrossRefGoogle Scholar
  40. 40.
    O. Demircioglu, S. Karatas, N. Yildirim, O.F. Bakkaloglu, Microelectron. Eng. 88(9), 2997–3002 (2011)CrossRefGoogle Scholar
  41. 41.
    Ö Güllü, A. Türüt, Microelectron. Eng. 87(12), 2482–2487 (2010)CrossRefGoogle Scholar
  42. 42.
    P.R. Sekhar Reddy, V. Janardhanam, I. Jyothi, S.-H. Yuk, V.R. Reddy, J.-C. Jeong, S.-N. Lee, C.-J. Choi, J. Semicond. Technol. Sci. 16(5), 664–674 (2016)CrossRefGoogle Scholar
  43. 43.
    O. Gullu, A. Turut, J. Appl. Phys. 106(10), 103717 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Takeshi Okamura, Seki, J. Appl. Phys. 31(6), B, L762–L764 (1992)CrossRefGoogle Scholar
  45. 45.
    V. Rajagopal Reddy, P.R. Sekhar Reddy, I. Neelakanta, C.-J. Reddy, Choi, RSC Adv. 6(107), 105761–105770 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. R. Sekhar Reddy
    • 1
  • V. Janardhanam
    • 1
  • I. Jyothi
    • 1
  • Cirandur Sri Harsha
    • 2
  • V. Rajagopal Reddy
    • 3
  • Sung-Nam Lee
    • 4
  • Jonghan Won
    • 5
  • Chel-Jong Choi
    • 1
  1. 1.School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC)Chonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Department of Electronics and CommunicationsM S Ramaiah Institute of TechnologyBangaloreIndia
  3. 3.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  4. 4.Department of Nano-optical EngineeringKorea Polytechnic UniversitySiheungRepublic of Korea
  5. 5.Advanced Nano Surface Research GroupKorea Basic Science InstituteDaejeonRepublic of Korea

Personalised recommendations