Applied Physics A

, 124:118 | Cite as

Defects induced by MeV H+ implantation for exfoliating of free-standing GaN film

  • Kai Huang
  • Tiangui You
  • Qi Jia
  • Ailun Yi
  • Shibin Zhang
  • Runchun Zhang
  • Jiajie Lin
  • Min Zhou
  • Wenjie Yu
  • Bo Zhang
  • Xin Ou
  • Xi Wang


High-energy ion slicing is promising to produce the free-standing GaN films with thickness in the range of 10–20 µm, which would promote the mass applications of GaN substrates. In this paper, bulk GaN was implanted by 1.6 MeV H ions with the mean projected range Rp of around 17 μm and the thermal evolution of the H-induced defects was investigated in detail. Due to the migration-coalescence mechanism, the H-induced point defects gather to form the initial cavity defects which grow up via the Ostwald ripening mechanism. The cavity defect distribution is determined by the distributions of the implanted hydrogen and the implantation-induced damages. The area ratio of cavity defects in the center damage band of the 1.6 MeV sample was around 3.4%. Annealing at higher temperature enhances the defect migration and recovery. Larger H ion fluence or higher annealing temperature is required to accomplish the exfoliation of a free-standing GaN thick film.



This work was supported by the National Key Research and Development Program of China (No. 2017YFB0404100). We acknowledge that the high energy ion implantation was performed at the Ion Beam Center of Helmholtz-Zentrum Dresden-Rossendorf.

Supplementary material

339_2017_1508_MOESM1_ESM.docx (922 kb)
Supplementary material 1 (DOCX 922 KB)


  1. 1.
    F.A. Ponce, D.P. Bour, Nature 386, 351 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE 90, 1065 (2002)CrossRefGoogle Scholar
  3. 3.
    T. Kachi, Jpn. J. Appl. Phys. 53, 100210 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    S. Nakamura, M.R. Krames, Proc. IEEE 101, 2211 (2013)CrossRefGoogle Scholar
  5. 5.
    B. Shen, Y.G. Zhou, Z.Z. Chen, P. Chen, R. Zhang, Y. Shi, Y.D. Zheng, W. Tong, W. Park, Appl. Phys. A 68, 593 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    J. Sun, J. Chen, X. Wang, J. Wang, W. Liu, J. Zhu, H. Yang, Appl. Phys. A Mater. Sci. Process 89, 177 (2007)CrossRefGoogle Scholar
  7. 7.
    B.J. Zhang, Y. Liu, Chin. Sci. Bull. 59, 1251 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Amano, Jpn. J. Appl. Phys. 52, 050001 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M. Bruel, Electron. Lett. 31, 1201 (1995)CrossRefGoogle Scholar
  10. 10.
    G.K. Celler, S. Cristoloveanu, J. Appl. Phys. 93, 4955 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F.D. Newman, H.A. Atwater, Appl. Phys. Lett. 91, 012108 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Q.Y. Tong, Y.L. Chao, L.J. Huang, U. Gosele, Electron. Lett. 35, 341 (1999)CrossRefGoogle Scholar
  13. 13.
    H.J. Woo, H.W. Choi, W. Hong, J.H. Park, C.H. Eum, Surf. Coat. Technol. 203, 2375 (2009)CrossRefGoogle Scholar
  14. 14.
    S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, G. Li, J. Appl. Phys. 91, 3928 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    U. Dadwal, R. Scholz, M. Reiche, P. Kumar, S. Chandra, R. Singh, Appl. Phys. A Mater. Sci. Process 112, 451 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M.G. Weinstein, C.Y. Song, M. Stavola, S.J. Pearton, R.G. Wilson, R.J. Shul, K.P. Killeen, M.J. Ludowise, Appl. Phys. Lett. 72, 1703 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    O. Moutanabbir, Y.J. Chabal, M. Chicoine, S. Christiansen, R. Krause-Rehberg, F. Schiettekatte, R. Scholz, O. Seitz, S. Senz, F. Susskraut, U. Gosele, Nucl. Instrum. Methods Phys. Res. Sect. B 267, 1264 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    I. Radu, R. Singh, R. Scholz, U. Gosele, S. Christiansen, G. Bruderl, C. Eichler, V. Harle, Appl. Phys. Lett. 89, 031912 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    O. Moutanabbir, R. Scholz, U. Gosele, A. Guittoum, M. Jungmann, M. Butterling, R. Krause-Rehberg, W. Anwand, W. Egger, P. Sperr, Phys. Rev. B 81, 115205 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J.F. Michaud, A.M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, N. Kernevez, Electron. Lett. 41, 668 (2005)CrossRefGoogle Scholar
  21. 21.
    O. Moutanabbir, U. Gosele, J. Electron. Mater. 39, 482 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    R.B.K. Chung, D. Kim, S.K. Lim, J.S. Choi, K.J. Kim, B.H. Lee, K.S. Jung, H.J. Kim-Lee, W.J. Lee, B. Park, K. Woo, Appl. Phys. Express 6, 111005 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    O. Moutanabbir, S. Senz, R. Scholz, S. Christiansen, M. Reiche, A. Avramescu, U. Strauss, U. Gosele, Electrochem. Solid-State Lett. 12, H105 (2009)CrossRefGoogle Scholar
  24. 24.
    H. Assaf, E. Ntsoenzok, Nucl. Instrum. Methods Phys. Res. Sect. B 240, 183 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    C. Braley, F. Mazen, A. Tauzin, F. Rieutord, C. Deguet, E. Ntsoenzok, Nucl. Instrum. Methods Phys. Res. Sect. B 277, 93 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    V.P. Amarasinghe, L. Wielunski, A. Barcz, L.C. Feldman, G.K. Celler, ECS J. Solid State Sci. Technol. 3, P37 (2014)CrossRefGoogle Scholar
  27. 27.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    H. Yamane, M. Shimada, S.J. Clarke, F.J. DiSalvo, Chem. Mater. 9, 413 (1997)CrossRefGoogle Scholar
  29. 29.
    H.-C. Huang, J.I. Dadap, O. Gaathon, I.P. Herman, R.M. Osgood, S. Bakhru, H. Bakhru, Opt. Mater. Express 3, 126 (2013)CrossRefGoogle Scholar
  30. 30.
    H. Harima, J. Phys. Condens. Matter. 14, R967 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    X. Wang, Y.W. Zhang, S.Y. Liu, Z.Q. Zhao, Nucl. Instrum. Methods Phys. Res. Sect. B 319, 55 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    J.G. Swadener, M.I. Baskes, M. Nastasi, Phys. Rev. B 72(R), 201202 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    H.Y. Xiao, F. Gao, X.T. Zu, W.J. Weber, J. Appl. Phys. 105, 123527 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    S. Frabboni, F. Corni, C. Nobili, R. Tonini, G. Ottaviani, Phys. Rev. B 69, 165209 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    U. Dadwal, R. Singh, Appl. Phys. Lett. 102, 081606 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    X. Ou, R. Kogler, A. Mucklich, W. Skorupa, W. Moller, X. Wang, L. Vines, Appl. Phys. Lett. 94, 011903 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M. Dumont, G. Regula, M.V. Coulet, M.F. Beaufort, E. Ntsoenzok, B. Pichaud, Mater. Sci. Eng. B 182, 45 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Reiss, K.H. Heinig, Nucl. Instrum. Methods Phys. Res. Sect. B 84, 229 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    J. Grisolia, A. Claverie, G. Ben Assayag, S. Godey, E. Ntsoenzok, F. Labhom, A. Van Veen, J. Appl. Phys. 91, 9027 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    H. Schroeder, P.F.P. Fichtner, J. Nucl. Mater. 179, 1007 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kai Huang
    • 1
    • 2
  • Tiangui You
    • 1
  • Qi Jia
    • 1
    • 2
  • Ailun Yi
    • 1
    • 2
  • Shibin Zhang
    • 1
    • 2
  • Runchun Zhang
    • 1
    • 2
  • Jiajie Lin
    • 1
    • 2
  • Min Zhou
    • 1
  • Wenjie Yu
    • 1
  • Bo Zhang
    • 1
  • Xin Ou
    • 1
  • Xi Wang
    • 1
  1. 1.State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Microsystem and Information Technology, Chinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations