Applied Physics A

, 124:119 | Cite as

Dark mode engineering in metasurfaces by symmetry matching approach

  • Elena Bochkova
  • Shah Nawaz Burokur
  • André de Lustrac
  • Anatole Lupu


We revisit the engineering of metasurfaces to obtain sharp features in their spectral response. We show that in contrast to conventional approach exploiting indirect mode hybridization mechanism based on strong near-field coupling, a more flexible and efficient engineering of the spectral response can be achieved using a symmetry matching approach for the excitation of dark modes. This distinctly different mechanism takes advantage of the geometry symmetry of the structure with regard to the incident external electromagnetic field for a direct far-field coupling.



E. Bochkova acknowledges her Ph.D. scholarship from the French Ministry of Higher Education and Research.


  1. 1.
    S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)CrossRefGoogle Scholar
  2. 2.
    M.F. Yanik, W. Suh, Z. Wang, S. Fan, Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Q. Xu, S. Sandhu, M.L. Povinelli, J. Shakya, S. Fan, M. Lipson, Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    R.W. Boyd, D.J. Gauthier, “Photonics: Transparency on an optical chip. Nature 441, 701 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    B. Luk‘yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, T.C. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    B. Gallinet, O.J.F. Martin, Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. ACS Nano 7, 6978 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Gallinet, O.J.F. Martin, Influence of electromagnetic interactions on the line shape of plasmonic fano resonances. ACS Nano 11, 8999–9008 (2011)CrossRefGoogle Scholar
  9. 9.
    F. Falcone et al., Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, 197401 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Guo et al., Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators. Opt. Express 20, 24348 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Y.-P. Jia et al., Complementary chiral metasurface with strong broadband optical activity and enhanced transmission. Appl. Phys. Lett. 104, 011108 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, N.I. Zheludev, Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    C. Forestiere, L. Dal Negro, G. Miano, Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures. Phys. Rev. B 88, 155411 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    A. Lovera, B. Gallinet, P. Nordlander, O.J.F. Martin, Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527 (2013)CrossRefGoogle Scholar
  15. 15.
    B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys. Rev. A 88, 053819 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S.N. Burokur, A. Lupu, A. de Lustrac, Direct dark mode excitation by symmetry matching of a single-particle based metasurface. Phys. Rev. B 91, 035104 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    E. Bochkova, S.N. Burokur, A. de Lustrac, A. Lupu, Direct dark modes excitation in bi-layered enantiomeric atoms-based metasurface through symmetry matching. Opt. Lett. 41, 412–415 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    N. Wongkasem, A. Akyurtlu, K.A. Marx, Group theory based design of isotropic negative refractive index metamaterial”. Prog. Electromagn. Res. 63, 295–310 (2006)CrossRefGoogle Scholar
  19. 19.
    W.J. Padilla, Group theoretical description of artificial electromagnetic metamaterials. Opt. Express, 15, 1639 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    J.D. Baena, L. Jelinek, R. Marqués, Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry. Phys. Rev. B, 76, 245115 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    C.M. Reinke et al., Group-theory approach to tailored electromagnetic properties of metamaterials: an inverse-problem solution. Phys. Rev. E, 83, 066603 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    I. Sersic, M.A. van de Haar, F.B. Arango, A.F. Koenderink, Ubiquity of optical activity in planar metamaterial scatterers. Phys. Rev. Lett. 108, 223903 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    ANSYS HFSS (High Frequency Structure Simulator), version 17 (2016)Google Scholar
  24. 24.
    J.D. Jackson, Classical electrodynamics, 3rd edn. (Wiley, New York, 1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elena Bochkova
    • 1
  • Shah Nawaz Burokur
    • 2
  • André de Lustrac
    • 1
    • 3
  • Anatole Lupu
    • 1
  1. 1.Centre de Nanosciences et de NanotechnologiesCNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N-OrsayOrsayFrance
  2. 2.LEME, UPL, Univ Paris NanterreVille d’AvrayFrance
  3. 3.UPL, Univ Paris NanterreVille d’AvrayFrance

Personalised recommendations