Time-resolved microscopy of fs-laser-induced heat flows in glasses

Abstract

Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient dn/dT. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser–matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Y. Bellouard, A. Said, M. Dugan, P. Bado, Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt. Express 12, 2120 (2004)

    ADS  Article  Google Scholar 

  2. 2.

    R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining—Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics 1st ed., ed. by R. Osellame, G. Cerullo, R. Ramponi, vol. 123 (Springer, Berlin, Heidelberg, 2012)

  4. 4.

    K. Sugioka, Y. Cheng, Ultrafast lasers - reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014)

    Article  Google Scholar 

  5. 5.

    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett. 21, 1729 (1996)

    ADS  Article  Google Scholar 

  6. 6.

    W. Watanabe, S. Onda, T. Tamaki, K. Itoh, J. Nishii, Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl. Phys. Lett. 89, 021106 (2006)

    ADS  Article  Google Scholar 

  7. 7.

    A.R. Collins, G.M. O’Connor, Mechanically inspired laser scribing of thin flexible glass. Opt. Lett. 40, 4811 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    N. Brouwer, B. Rethfeld, Excitation and relaxation dynamics in dielectrics irradiated by an intense ultrashort laser pulse, J. Opt. Soc. Am. B 31, C28 (2014)

    Article  Google Scholar 

  9. 9.

    S. Gross, M. Withford, Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332 (2015)

    Article  Google Scholar 

  10. 10.

    M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, K. Hirao, Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses. Appl. Phys. Lett. 93, 231112 (2008)

    ADS  Article  Google Scholar 

  11. 11.

    N. Bloembergen, Laser-induced electric breakdown in solids. IEEE J. Quantum Electron. 10, 375 (1974)

    ADS  Article  Google Scholar 

  12. 12.

    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749 (1996)

    ADS  Article  Google Scholar 

  13. 13.

    M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80, 4076 (1998)

    ADS  Article  Google Scholar 

  14. 14.

    K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J. McGaughey, J.A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    J.M. Larkin, A.J.H. McGaughey, Thermal conductivity accumulation in amorphous silica and amorphous silicon, Phys. Rev. B 89, 144303 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    J.F. Power, Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory, Appl. Opt. 29, 52 (1990)

    ADS  Article  Google Scholar 

  17. 17.

    M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, K. Hirao, Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse. Opt. Express 15, 16800 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    V.V. Kononenko, E.V. Zavedeev, M.I. Latushko, V.I. Konov, Observation of fs laser-induced heat dissipation in diamond bulk. Laser Phys. Lett. 10, 036003 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    G. Ghosh, Model for the thermo-optic coefficients of some standard optical glasses. J. Non-Cryst. Solids 189, 191 (1995)

    Google Scholar 

  20. 20.

    A. Mermillod-Blondin, H. Mentzel, A. Rosenfeld, Time-resolved microscopy with random lasers. Opt. Lett. 38, 4112 (2013)

    ADS  Article  Google Scholar 

  21. 21.

    M.K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J.P. Colombier, R. Stoian, Ultrafast laser nanostructuring in bulk silica, a slow microexplosion. Optica 4, 951 (2017)

    Article  Google Scholar 

  22. 22.

    A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, I.V. Hertel, Time-resolved imaging of laser-induced refractive index changes in transparent media. Rev. Sci. Instrum. 82, 033703 (2011)

    ADS  Article  Google Scholar 

  23. 23.

    D.S. Wiersma, The physics and applications of random lasers, Nat. Phys. 4, 359 (2008)

    Article  Google Scholar 

  24. 24.

    B. Redding, M.A. Choma, H. Cao, Speckle-free laser imaging using random laser illumination. Nat. Photon. 6, 355 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    A. Mermillod-Blondin, I.M. Burakov, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, R. Stoian, Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates, Phys. Rev. B 77, 104205 (2008)

  26. 26.

    T. Yoshino, Y. Ozeki, M. Matsumoto, K. Itoh, In situ micro-Raman investigation of spatio-temporal evolution of heat in ultrafast laser microprocessing of glass. Jpn. J. Appl. Phys. 51, 102403 (2012)

    ADS  Article  Google Scholar 

  27. 27.

    M. Grehn, T. Seuthe, M. Höfner, N. Griga, C. Theiss, A. Mermillod-Blondin, M. Eberstein, H. Eichler, J. Bonse, Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy, Opt. Mater. Express 4, 689 (2014)

    Article  Google Scholar 

  28. 28.

    V.R. Bhardwaj, P.B. Corkum, D.M. Rayner, C. Hnatovsky, E. Simova, R.S. Taylor, Stress in femtosecond-laser-written waveguides in fused silica. Opt. Lett. 29, 1312 (2004)

    ADS  Article  Google Scholar 

  29. 29.

    A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys. Rev. B 71, 125435 (2005)

    ADS  Article  Google Scholar 

  30. 30.

    T.H. Nguyen, M. Kandel, H.M. Shakir, C. Best-Popescu, J. Arikkath, M.N. Do, G. Popescu, Halo-free phase contrast microscopy. Sci. Reports 7, 44034 (2017)

    ADS  Article  Google Scholar 

  31. 31.

    E. Gamaly, The physics of ultra-short laser interaction with solids at non-relativistic intensities, Phys. Rep. 508, 91 (2011)

    ADS  Article  Google Scholar 

  32. 32.

    M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, K. Hirao, Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses, J. Appl. Phys. 108, 073533 (2010)

  33. 33.

    H. Carlsaw, J. Jaeger, Conduction of heat in solids (Oxford Science Publications, Oxford, 1959)

  34. 34.

    I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod- Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses, J. Appl. Phys. 101, 043506 (2007)

    ADS  Article  Google Scholar 

  35. 35.

    P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, J.-L. Rullier, Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations. Appl. Phys. Lett. 101, 211908 (2012)

    ADS  Article  Google Scholar 

  36. 36.

    F. Gan, New system of calculation of properties of inorganic oxide glasses, Sci. Sin. 17, 533 (1974) (in Russian)

    Google Scholar 

  37. 37.

    R. Kamikawachi, I. Abe, A. Paterno, H. Kalinowski, M. Muller, J. Pinto, J. Fabris, Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer. Optics Commun. 281, 621 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    Y.H. Kim, S.J. Park, S.-W. Jeon, S. Ju, C.-S. Park, W.-T. Han, B.H. Lee, Thermo-optic coefficient measurement of liquids based on simultaneous temperature and refractive index sensing capability of a two-mode fiber interferometric probe. Opt. Express 20, 23744 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the German Research Foundation DFG (Grants Nos. EB 248/4-2; EI 110/30-2; RO 2074/8-2; ME 4427/1-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandre Mermillod-Blondin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 863 kb)

Supplementary material 2 (AVI 813 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonse, J., Seuthe, T., Grehn, M. et al. Time-resolved microscopy of fs-laser-induced heat flows in glasses. Appl. Phys. A 124, 60 (2018). https://doi.org/10.1007/s00339-017-1465-5

Download citation