Skip to main content
Log in

Effect of reduced graphene oxide on photocatalytic properties of electrodeposited ZnO

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO-nanostructured films were obtained by electrodeposition in the presence of varying content of graphene oxide (GO) in reduced (rGO) and non-reduced state. The hybridized ZnO nanostructures were studied by X-ray diffraction measurements, scanning electron microscopy, atomic force microscopy and Raman spectroscopy and transmittance measurements. The results showed the ZnO structure and morphology are markedly influenced by graphene state (GO/rGO) and content. The photocatalytic tests indicated the ability of electrodeposited ZnO-nanostructured films to photodegrade methylene blue depends on the morphology and structure characteristics induced by both on oxygen content and sp2 recovery of carbon network in the rGO, upon a fine tuning of the rGO content in the deposited films. The obtained results demonstrate the electrodeposition as a viable approach for tuning the properties of ZnO complex structures for improved performance in various fields of application such as photocatalysis or optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Nagata, S. Oh, Y. Yamashita, H. Yoshikawa, N. Ikeno, K. Kobayashi, T. Chikyow, Y. Wakayama, Appl. Phys. Lett. 102, 43302 (2013)

    Article  Google Scholar 

  2. X.W. Sun, J.X. Wang, Nano Lett. 8, 1884 (2008)

    Article  ADS  Google Scholar 

  3. L.J.A. Koster, O. Stenzel, S.D. Oosterhout, M.M. Wienk, V. Schmidt, R.A.J. Janssen, Adv. Energy Mater. 3, 615 (2013)

    Article  Google Scholar 

  4. A. Tamvakos, D. Calestani, D. Tamvakos, R. Mosca, D. Pullini, A. Pruna, Microchim. Acta 182, 1991 (2015)

    Article  Google Scholar 

  5. A. Tamvakos, D. Calestani, D. Tamvakos, D. Pullini, M. Sgroi, A. Pruna, Microelectron. Eng. 160, 12 (2016)

    Article  Google Scholar 

  6. F. Xu, Y. Lu, Y. Xie, Y. Liu, Mater. Des. 30, 1704 (2009)

    Article  Google Scholar 

  7. K. Ichinose, T. Mizuno, M. Schuette White, T. Yoshida, J. Electrochem. Soc. 161, D195 (2014)

    Article  Google Scholar 

  8. H. Zhang, R. Zong, Y. Zhu, J. Phys. Chem. C 113, 4605 (2009)

    Article  Google Scholar 

  9. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  10. D. Chen, D. Wang, Q. Ge, G. Ping, M. Fan, L. Qin, L. Bai, C. Lv, K. Shu, Thin Solid Films 574, 1 (2015)

    Article  ADS  Google Scholar 

  11. J. Cembrero, A. Pruna, D. Pullini, D. Busquets-Mataix, Ceram. Int. 40, 10351 (2014)

    Article  Google Scholar 

  12. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  ADS  Google Scholar 

  13. M. Grätzel, Inorg. Chem. 44, 6841 (2005)

    Article  Google Scholar 

  14. C.E. Small, S. Chen, J. Subbiah, C.M. Amb, S.-W. Tsang, T.-H. Lai, J.R. Reynolds, F. So, Nat. Photonics 6, 115 (2011)

    Article  ADS  Google Scholar 

  15. F. Kayaci, S. Vempati, C. Ozgit-Akgun, I. Donmez, N. Biyikli, T. Uyar, Appl. Catal. B Environ. 176–177, 646 (2015)

    Article  Google Scholar 

  16. M. Kateb, S. Safarian, M. Kolahdouz, M. Fathipour, V. Ahamdi, Sol. Energy Mater. Sol. Cells 145, 200 (2016)

    Article  Google Scholar 

  17. M. Kateb, V. Ahmadi, M. Mohseni, Sol. Energy Mater. Sol. Cells 112, 57 (2013)

    Article  Google Scholar 

  18. Z.-L. Wang, R. Guo, L.-X. Ding, Y.-X. Tong, G.-R. Li, Sci. Rep. 3, 1204 (2013)

    Article  Google Scholar 

  19. Z.-L. Wang, R. Guo, G.-R. Li, L.-X. Ding, Y.-N. Ou, Y.-X. Tong, RSC Adv. 1, 48 (2011)

    Article  Google Scholar 

  20. A. Pruna, Q. Shao, M. Kamruzzaman, J.A. Zapien, A. Ruotolo, Electrochim. Acta 187, 517 (2016)

    Article  Google Scholar 

  21. W. Chen, Z. Fan, L. Gu, X. Bao, C. Wang, Chem. Commun. (Camb) 46, 3905 (2010)

    Article  Google Scholar 

  22. A. Prună, V. Brânzoi, F. Brânzoi, J. Appl. Electrochem. 41, 77 (2010)

    Article  Google Scholar 

  23. C. Zhu, J. Zhai, D. Wen, S. Dong, J. Mater. Chem. 22, 6300 (2012)

    Article  Google Scholar 

  24. A. Pruna, D. Pullini, D. Busquets, Ceram. Int. 41, 14492 (2015)

    Article  Google Scholar 

  25. A. Pruna, Q. Shao, M. Kamruzzaman, Y.Y. Li, J.A. Zapien, D. Pullini, D. Busquets, A. Mataix, Ruotolo, Appl. Surf. Sci. 392, 801 (2017)

    Article  ADS  Google Scholar 

  26. A. Pruna, D. Pullini, D. Tamvakos, A. Tamvakos, D. Busquets-Mataix, Mater. Sci. Technol. 31, 1794 (2015)

    Article  Google Scholar 

  27. A. Pruna, Q. Shao, M. Kamruzzaman, J.A. Zapien, A. Ruotolo, Ceram. Int. (2016)

  28. D. Pathania, R. Katwal, H. Kaur, Int. J. Miner. Metall. Mater. 23, 358 (2016)

    Article  Google Scholar 

  29. A. Pruna, D. Pullini, D. Busquets, J. Mater. Sci. Technol. 31, 458 (2015)

    Article  Google Scholar 

  30. A. Pruna, D. Pullini, D. Busquets, J. Nanopart. Res. 15, 1605 (2013)

    Article  ADS  Google Scholar 

  31. S. Sönmezoʇlu, E. Akman, Appl. Surf. Sci. 318, 319 (2014)

    Article  ADS  Google Scholar 

  32. S. Abdolhosseinzadeh, H. Asgharzadeh, S. Sadighikia, A. Khataee, Res. Chem. Intermed. 42, 4479 (2016)

    Article  Google Scholar 

  33. S.-S. Wang, A.-W. Xu, CrystEngComm 15, 376 (2013)

    Article  Google Scholar 

  34. B. Ludi, M.J. Süess, I.A. Werner, M. Niederberger, Nanoscale 4, 1982 (2012)

    Article  ADS  Google Scholar 

  35. L.W. Yang, X.L. Wu, G.S. Huang, T. Qiu, Y.M. Yang, J. Appl. Phys. 97, 14308 (2005)

    Article  ADS  Google Scholar 

  36. S.P. Anthony, J.I. Lee, J.K. Kim, Appl. Phys. Lett. 90, 103107 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was partially supported by Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI (Project number PN-II-RU-TE-2014-4-0806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pruna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pruna, A., Cembrero, J., Pullini, D. et al. Effect of reduced graphene oxide on photocatalytic properties of electrodeposited ZnO. Appl. Phys. A 123, 792 (2017). https://doi.org/10.1007/s00339-017-1424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1424-1

Navigation