Applied Physics A

, 124:243 | Cite as

Solution-processable alumina: PVP nanocomposite dielectric layer for high-performance organic thin-film transistors

Article
  • 14 Downloads

Abstract

In this article, we have investigated the effect of nanocomposite gate dielectric layer built by alumina (Al2O3) and poly(4-vinyphenol) (PVP) with solution method which could enhance the dielectric capability and decrease the surface polarity. Then, we used modify layer to optimize the surface morphology of dielectric layer to further improve the insulation capability, and finally we fabricated the high-performance and low-voltage organic thin-film transistors by using this nanocomposite dielectric layer. The result shows that the devices with Al2O3:10%PVP dielectric layer with a modified layer exhibited a mobility of 0.49 cm2/Vs, Ion/Ioff ratio of 7.8 × 104, threshold voltage of − 1.2 V, sub-threshold swing of 0.3 V/dec, and operating voltage as low as − 4 V. The improvement of devices performance was owing to the good insulation capability, appropriate capacitance of dielectric layer, and preferable interface contact, smaller crystalline size of active layer.

References

  1. 1.
    T. Sekitani, U. Zschieschang, H. Klauk et al., Flexible organic transistors and circuits w1ith extreme bending stability[J]. Nat. Mater. 9(12), 1015–1022 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    L.L. Chua, J. Zaumseil, J.F. Chang et al., General observation of n-type field-effect behaviour in organic semiconductors[J]. Nature 434(7030), 194–199 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    K. Myny, S. Steudel, S. Smout et al., Organic RFID transponder chip with data rate compatible with electronic product coding[J]. Org. Electron. 11(7), 1176–1179 (2010)CrossRefGoogle Scholar
  4. 4.
    V. Coropceanu, J. Cornil et al., Charge transport in organic semiconductors[J]. Chem. Rev. 107(4), 926–952 (2007)CrossRefGoogle Scholar
  5. 5.
    S.Y. Yang, S.H. Kim, K. Shin et al., Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics[J]. Appl. Phys. Lett. 88(17), 173507 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    C. Avis, J. Jang, High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method[J]. J. Mater. Chem. 21(29), 10649–10652 (2011)CrossRefGoogle Scholar
  7. 7.
    P.K. Nayak, M.N. Hedhili, D. Cha et al., High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric[J]. Appl. Phys. Lett. 103(3), 033518 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    J.H. Kwon, X. Zhang, S.H. Piao et al., Stability Study of Flexible 6, 13-Bis (triisopropylsilylethynyl) pentacene thin-film transistors with a cross-linked poly (4-vinylphenol)/yttrium oxide nanocomposite gate insulator[J]. Polymers 8(3), 88 (2016)CrossRefGoogle Scholar
  9. 9.
    L.Y. Liang, H.T. Cao, Q. Liu et al., Substrate biasing effect on the physical properties of reactive RF-magnetron-sputtered aluminum oxide dielectric films on ITO glasses[J]. ACS Appl. Mater. Interfaces, 2014, 6(4), pp. 2255–2261CrossRefGoogle Scholar
  10. 10.
    Y. Su, C. Wang, W. Xie et al., Low-voltage organic field-effect transistors (OFETs) with solution-processed metal-oxide as gate dielectric[J]. ACS Appl. Mater. Interfaces, 2011, 3(12), pp. 4662–4667CrossRefGoogle Scholar
  11. 11.
    H.J. Ha, S.W. Jeong, T.Y. Oh et al., Flexible low-voltage pentacene memory thin-film transistors with combustion-processable Al2O3 gate dielectric and Au nanoparticles[J]. J. Phys. D: Appl. Phys. 46(23), 235102 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Q.J. Sun, J. Peng, W.H. Chen et al., Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric[J]. Org. Electron. 34, 118–123 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Xu, D. Luo, M. Li et al., A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric[J]. J. Mater. Chem. C 2(7), 1255–1259 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, J.H. Park, S. Baang et al., Poly (4-vinylphenol-co-methyl methacrylate)/titanium dioxide nanocomposite gate insulators for 6, 13-bis (triisopropylsilylethynyl)-pentacene thin-film transistors[J]. J. Korean Phys. Soc. 65(11), 1956–1960 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    X. Yu, L. Zeng, N. Zhou et al., Ultra-flexible,“invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends[J]. Adv. Mater. 27(14), 2390–2399 (2015)CrossRefGoogle Scholar
  16. 16.
    X. Ye, H. Lin, X. Yu et al., High performance low-voltage organic field-effect transistors enabled by solution processed alumina and polymer bilayer dielectrics[J]. Synth. Met. 209, 337–342 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Huang, L. Duan, G. Dong et al., High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode[J]. ACS Appl. Mater. Interfaces 6(23), 20786–20794 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Xu, H. Wang, F. Xie et al., Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors[J]. ACS Appl. Mater. Interfaces, 2015, 7(10), pp. 5803–5810Google Scholar
  19. 19.
    S.E. Fritz, T.W. Kelley, C.D. Frisbie, Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer[J]. J. Phys. Chem. B 109(21), 10574–10577 (2005)CrossRefGoogle Scholar
  20. 20.
    R.W. De Boer, M.E. I, Gershenson, A.F. Morpurgo et al., Organic single-crystal field-effect transistors[J]. Physica Status Solidi (a)., 2004, 201(6), 1302–1331Google Scholar
  21. 21.
    J.T. Anderson, C.L. Munsee, C.M. Hung et al., Solution-Processed HafSOx and ZircSOx Inorganic Thin-Film Dielectrics and Nanolaminates[J]. Adv. Funct. Mater. 17(13), 2117–2124 (2007)CrossRefGoogle Scholar
  22. 22.
    S.M. Sze, K.K. Ng, Physics of semiconductor devices[M]. Wiley, 2006Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations