Skip to main content
Log in

Characterization and antimicrobial activity of silver nanoparticles prepared by a thermal decomposition technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, there has been an increasing need of efficient synthetic protocols using eco-friendly conditions including low costs and green chemicals for production of metal nanoparticles. In this work, silver nanoparticles (silver NPs) with average particle size about 10 nm were synthesized by using a thermal decomposition technique. Unlike the colloidal chemistry method, the thermal decomposition method developed has advantages such as the high crystallinity, single-reaction synthesis, and easy dispersion ability of the synthesized NPs in organic solvents. In a modified synthesis process, we used sodium oleate as a capping agent to modify the surface of silver NPs because the oleate has a C18 tail with a double bond in the middle, therefore, forming a kink which is to be effective for aggregative stability. Importantly, the as-synthesized silver NPs have demonstrated strong antimicrobial effects against various bacteria and fungi strains. Electron microscopic studies reveal physical insights into the interaction and bactericidal mechanism between the prepared silver NPs and tested bacteria in question. The observed excellent antibacterial and antifungal activity of the silver NPs make them ideal for disinfection and biomedicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Chaloupka, Y. Malam, A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28, 580 (2010)

    Article  Google Scholar 

  2. M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009)

    Article  Google Scholar 

  3. Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin, G.V. Lisichkin, Synthesis and properties of silver nanoparticles: advances and prospects. Russ. Chem. Rev. 77, 233 (2008)

    Article  ADS  Google Scholar 

  4. K.J. Lee, B.H. Jun, T.H. Kim, J. Joung, Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17, 2424 (2006)

    Article  ADS  Google Scholar 

  5. K.J. Lee, B.H. Jun, J. Choi, Y.I. Lee, J. Joung, Y.S. Oh, Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics. Nanotechnology 18, 335601 (2007)

    Article  Google Scholar 

  6. Y. Yin, Z.Y. Li, B. Gates, Y. Xia, S. Venkateswaran, Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem. 12, 522 (2002)

    Article  Google Scholar 

  7. A. Panaček, L. Kvitek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V.K. Sharma, T. Nevěčná, R. Zbořil, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110, 16248 (2006)

    Article  Google Scholar 

  8. L. Kvítek, A. Panáek, J. Soukupová, M. Kolář, R. Večeřová, R. Prucek, M. Holecová, R. Zbořil, Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles. J. Phys. Chem. C 112, 5825 (2008)

    Article  Google Scholar 

  9. D. Kim, S. Jeong, J. Moon, Synthesis of silver nanoparticles using polyol process and the influence of precursor injection. Nanotechnology 17, 4019 (2006)

    Article  ADS  Google Scholar 

  10. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002)

    Article  ADS  Google Scholar 

  11. Q. Zhang, J. Ge, T. Pham, J. Goebl, Y. Hu, Z. Lu, Y. Yin, Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. Angew. Chem., Int. Ed. Engl. 48, 3516 (2009)

    Article  Google Scholar 

  12. S.K. Ghosh, S. Kundu, M. Mandal, S. Nath, T. Pal, Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. J. Nanopart. Res. 5, 577 (2003)

    Article  Google Scholar 

  13. M. Sakamoto, M. Fujistuka, T. Majima, Light as construction tool of metal nanoparticles: synthesis and mechanism. J. Photochem. Photobiol., C, Photochem. Rev. 10, 33 (2009)

    Article  Google Scholar 

  14. A.T. Le, P.T. Huy, P.D. Tam, T.Q. Huy, P.D. Cam, A.A. Kudrinskiy, Y.A. Krutyakov, Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique. Curr. Appl. Phys. 10, 910 (2010)

    Article  ADS  Google Scholar 

  15. A.T. Le, T.T. Le, V.Q. Nguyen, H.H. Tran, D.A. Dang, Q.H. Tran, D.L. Vu, Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections. Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 045007 (2012)

    Article  Google Scholar 

  16. A. Kumar, P.K. Vemula, P.M. Ajayan, G. John, Silver-nanoparticles-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, 236 (2008)

    Article  ADS  Google Scholar 

  17. O. Perelshtein, G. Applerot, N. Perkas, G. Guibert, S. Mikhailov, A. Gedanken, Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19, 245705 (2008)

    Article  ADS  Google Scholar 

  18. T. Parametthanuwat, S. Rittidech, A. Pattiya, Y. Ding, S. Witharana, Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer. Nanoscale Res. Lett. 6, 315 (2011)

    Article  ADS  Google Scholar 

  19. N.S. Rodriguez, E.S. Ruelas, C.P. Gerba, K.R. Bright, Silver as a disinfectant. Rev. Environ. Contam. Toxicol. 191, 23 (2007)

    Article  Google Scholar 

  20. A.T. Le, P.T. Huy, L.T. Tam, P.D. Tam, N.V. Hieu, T.Q. Huy, Novel silver nanoparticles: synthesis, properties and applications. Int. J. Nanotechnol. 8, 278 (2011)

    Article  ADS  Google Scholar 

  21. K.J. Klabunde, R.M. Richards (eds.), Nanoscale Materials in Chemistry (Wiley, New York, 2009), pp. 146–147

    Google Scholar 

  22. D. Kim, J. Park, K. An, N.-K. Yang, J.-G. Park, T. Hyeon, Synthesis of hollow iron nanoframes. J. Am. Chem. Soc. 129, 5812 (2007)

    Article  Google Scholar 

  23. J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical nanoscrystals. Angew. Chem., Int. Ed. Engl. 46, 4630 (2007)

    Article  Google Scholar 

  24. Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, Y.S. Kang, Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids Surf. A, Physicochem. Eng. Asp. 284–285, 364 (2006)

    Article  Google Scholar 

  25. D.K. Lee, Y.S. Kang, Synthesis of silver nanocrystallites by a new thermal decomposition method and their characterization. ETRI J. 26, 252 (2004)

    Article  Google Scholar 

  26. T. Hyeon, Chemical synthesis of magnetic nanoparticles. Chem. Commun. 21, 927–934 (2003)

    Article  Google Scholar 

  27. J.N. Park, K.J. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891 (2004)

    Article  ADS  Google Scholar 

  28. A.J. Kora, R. Manjusha, J. Arunachalm, Superior bactericidal activity of SDS capped silver nanoparticles: synthesis and characterization. Mater. Sci. Eng. C 29, 2104 (2009)

    Article  Google Scholar 

  29. M. Lu, S. Su, Y. He, Q. Huang, W. Hu, D. Li, C. Fan, S.T. Lee, Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater. 22, 5463 (2010)

    Article  Google Scholar 

  30. M. Liong, B. France, K.A. Bradley, J.I. Zink, Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv. Mater. 21, 1684 (2009)

    Article  Google Scholar 

  31. A. Panaček, M. Kolář, R. Večeřová, R. Prucek, J. Soukupova, V. Krystof, P. Hanmal, R. Zbořil, L. Kvitek, Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30, 6333 (2009)

    Article  Google Scholar 

  32. J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346 (2005)

    Article  ADS  Google Scholar 

  33. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study of E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 275, 177 (2004)

    Article  Google Scholar 

  34. M. Raffi, F. Hussain, T.M. Bhatti, J.I. Akhter, A. Hameed, M.M. Hasan, Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Mater. Sci. Technol. 24, 192 (2008)

    Google Scholar 

  35. H.H. Lara, N.V. Ayala, L. Turrent, C.R. Padilla, Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World. J. Microbiol. Biotechnol. 26, 615–621 (2010)

    Article  Google Scholar 

  36. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, 225103 (2007)

    Article  ADS  Google Scholar 

  37. J. Liu, D.A. Sonshine, S. Shevani, R.H. Hurt, Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4, 6903 (2010)

    Article  Google Scholar 

  38. W. Yang, C. Shen, Q. Ji, H. An, J. Wang, Q. Liu, Z. Zhang, Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20, 085102 (2009)

    Article  ADS  Google Scholar 

  39. C.M. Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531 (2010)

    Article  Google Scholar 

  40. J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Le et al., Antimicrobial effects of silver nanoparticles. Nanomedicine 95 (2007)

  41. G.A. Sotiriou, S.E. Pratsinis, Antibacterial activity of nanosilver ions and particles. Environ. Sci. Technol. 44, 5649 (2010)

    Article  ADS  Google Scholar 

  42. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007)

    Article  Google Scholar 

  43. J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4, 707–716 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Vietnam’s National Foundation for Science and Technology Development (NAFOSTED) through a fundamental research project (code: 106.99-2010.54). The authors also acknowledge the technical supports from Scientific Collaborative Program on Nano-Biomedical Research between the Department of Nanoscience and Nanotechnology at Hanoi University for Science and Technology (HUST) and the National Institute of Hygiene and Epidemiology (NIHE) in Hanoi-Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le Thi Tam or Anh-Tuan Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, L.T., Phan, V.N., Lan, H. et al. Characterization and antimicrobial activity of silver nanoparticles prepared by a thermal decomposition technique. Appl. Phys. A 113, 613–621 (2013). https://doi.org/10.1007/s00339-013-7810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7810-4

Keywords

Navigation