Skip to main content
Log in

Temperature analysis of laser heated polymers on microsecond time scales

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To investigate the temperature profiles on laser heated polymer films, we track the thermal radiation with 1 μs time and 1 μm spatial resolution. The resulting two-dimensional temperature graphs are compared to finite element simulations in order to understand the heat conversion and flow. The temperature measurement setup consists of a NIR laser and an optical detection system, which includes high performance optics and a microsecond gated camera, equipped with several interference filters. In this way the thermal radiation is detected in the visible range with spectral resolution. Fitting the spectrum with Planck’s law, two-dimensional micrographs of the temperature distribution are obtained. For polystyrene surfaces we were able to analyze the heating and the ablation behavior. Good agreement was found between experimental results and finite element simulations, when ablation is limited to a few tens of nanometers of the film thickness. Ablation of polystyrene starts at 150°C, 50 K above the glass transition temperature. We suggest a photomechanical ablation mechanism at that threshold fluence. For ablation at higher fluence and peak temperature, experiments indicate a thermal decomposition reaction. The temperature range of spinodal decomposition is not reached and can in our case be ruled out as ablation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.D. Hare, J. Franken, D.D. Dlott, J. Appl. Phys. 77, 5950–5960 (1995)

    Article  ADS  Google Scholar 

  2. X.N. Wen, W.A. Tolbert, D.D. Dlott, J. Chem. Phys. 99, 4140–4151 (1993)

    Article  ADS  Google Scholar 

  3. S. Kuper, J. Brannon, K. Brannon, Appl. Phys. A, Mater. Sci. Process. 56, 43–50 (1993)

    Article  ADS  Google Scholar 

  4. S.L. Johnson, D.M. Bubb, R.F. Haglund Jr., Appl. Phys. A, Mater. Sci. Process. 96, 627–635 (2009)

    Article  ADS  Google Scholar 

  5. W.A. Tolbert, I.Y.S. Lee, M.M. Doxtader, E.W. Ellis, D.D. Dlott, J. Imaging Sci. Technol. 37, 411–422 (1993)

    Google Scholar 

  6. T. Lippert, Adv. Polym. Sci. 168, 51–246 (2004)

    Article  Google Scholar 

  7. I. Itzkan, D. Albagli, M.L. Dark, L.T. Perelman, C. von Rosenberg, M.S. Feld, Proc. Natl. Acad. Sci. 92, 1960–1964 (1995)

    Article  ADS  Google Scholar 

  8. S.G. Koulikov, D.D. Dlott, J. Photochem. Photobiol. A, Chem. 145, 183–194 (2001)

    Article  Google Scholar 

  9. D.P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, R.W. Eason, Europhys. Lett. 83, 38003 (2008)

    Article  ADS  Google Scholar 

  10. R. Fardel, M. Nagel, T. Lippert, F. Nüesch, A. Wokaun, B.S. Luk’yanchuk, Appl. Phys. A, Mater. Sci. Process. 90, 661–667 (2008)

    Article  ADS  Google Scholar 

  11. A.N. Magunov, Instrum. Exp. Tech. 52, 451–472 (2009)

    Article  Google Scholar 

  12. V.A. Kop’ev, I.A. Kossyi, A.N. Magunov, N.M. Tarasova, Instrum. Exp. Tech. 49, 573–576 (2006)

    Article  Google Scholar 

  13. R.S. Kappes, C. Li, H.-J. Butt, J.S. Gutmann, New J. Phys. 12, 083011 (2010)

    Article  ADS  Google Scholar 

  14. Y. Sakakibara, I. Yamada, S. Hiraoka, T. Aragaki, J. Chem. Eng. Jpn. 23, 499–502 (1990)

    Article  Google Scholar 

  15. E. Marti, E. Kaisersberger, E. Moukhina, J. Therm. Anal. Calorim. 85, 505–525 (2006)

    Article  Google Scholar 

  16. R.D. Lide, CRC Handbook of Chemistry and Physics, 87th edn. (CRC Press, Boca Raton, 2006). Chap. 12, p. 207

    Google Scholar 

  17. J. Huang, P.K. Gupta, J. Non-Cryst. Solids 139, 239–247 (1992)

    Article  ADS  Google Scholar 

  18. Y. Avlasevich, C. Li, K. Müllen, J. Mater. Chem. 20, 3814–3826 (2010)

    Article  Google Scholar 

  19. I.Y.S. Lee, W.A. Tolbert, D.D. Dlott, M.M. Doxtader, D.M. Foley, R.D. Arnold, E.W. Ellis, J. Imaging Sci. Technol. 36, 180–187 (1992)

    Google Scholar 

  20. J. Brandrup, E.H. Immergut, E.A. Grulke, A. Akihiro, R.D. Bloch, Polymer Handbook, 4th edn. (Wiley, New York, 2005). V/91-96

    Google Scholar 

  21. R. Greiner, F.R. Schwarzl, Rheol. Acta 23, 378–395 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Agfa-Gevaert N.V. for financial support and helpful discussions. Furthermore thanks go to the staff of the Max Planck Institute for Polymer Research, especially to Andreas Best for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf S. Kappes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappes, R.S., Schönfeld, F., Li, C. et al. Temperature analysis of laser heated polymers on microsecond time scales. Appl. Phys. A 106, 791–801 (2012). https://doi.org/10.1007/s00339-011-6715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6715-3

Keywords

Navigation