Depth gradients in abundance and functional roles suggest limited depth refuges for herbivorous fishes

Abstract

As some types of disturbance to coral reefs are attenuated with depth, the resilience of herbivorous fish species utilizing shallow areas (< 30 m) is likely enhanced if their population footprint extends into adjacent deeper reef areas. Using field surveys from an isolated coral reef, off northwest Australia, we created data-driven models relating herbivorous fish communities to habitat across an extended depth range (4–76 m). Models assessed variations in functional redundancy across depth to test if the ecological functions provided by herbivores at shallow reefs can be replenished by deep water populations. Eighty percent of herbivorous species (1967 fishes, 48 species total) were associated with depths < 30 m, where hard coral was the dominant benthos (peak diversity ~ 20 m). Some species were restricted to shallow reef (< 30 m), while others were ubiquitous (4–70 m), or most abundant in deeper reef (30–70 m). Functional diversity and redundancy were highest at < 30 m, almost 2 × higher than for deeper (> 30 m) reef areas. Scraper herbivores were associated with the reef crest (< 10 m), grazers with the reef slope (< 30 m), and browsers were evenly distributed across depth (4–70 m). Impacts to herbivores in shallow reefs (e.g. ocean warming, storms, fishing) may be ameliorated if species are widely distributed across depth, or have the ability to opportunistically relocate to adjacent undisturbed areas. Deeper habitat appears to support a subset of the herbivore community, by providing habitat and resources for the browser functional group (only herbivores capable of ingesting large macroalgae) and species with generalist depth distributions and known trophic flexibility (e.g. genus Scarus). Additional management of depth zones where functional group distributions overlap may maximize chances of sustaining herbivore diversity and functional redundancy, and provide enhanced protection across depth for important fished species such as large parrotfishes and unicornfishes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Source of map imagery: Planet Labs (planet.com)

References

  1. Adam TC, Burkepile DE, Ruttenberg BI, Paddack MJ (2015) Herbivory and the resilience of Caribbean coral reefs: Knowledge gaps and implications for management. Mar Ecol Prog Ser 520:1–20

    Article  Google Scholar 

  2. Althaus F, Hill N, Edwards L, Ferrari R (2013) CATAMI Classification scheme for scoring marine biota and substrata in underwater imagery – A pictorial guide to the collaborative and annotation tools for analysis of marine imagery and video (CATAMI) classification scheme. Version 1. Australia

  3. Alwany MA, Thaler E, Stachowitsch M (2009) Parrotfish bioerosion on Egyptian Red Sea reefs. J Exp Mar Bio Ecol 371:170–176

    Article  Google Scholar 

  4. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: Guide to software and statistical methods. PRIMER-E Ltd, UK

    Google Scholar 

  5. Aponte N, Ballantine D (2001) Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res 1 Oceanogr Res Pap 48:2185–2194

  6. Asher J, Williams ID, Harvey ES (2017) Mesophotic depth gradients impact reef fish assemblage composition and functional group partitioning in the main Hawaiian Islands. Front Mar Sci 4:1–18

    Article  Google Scholar 

  7. Bejarano I, Appeldoorn R, Nemeth M (2014) Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs 33:313–328

    Article  Google Scholar 

  8. Bellwood DR, Hughes TP, Hoey AS (2006) Sleeping functional group drives coral-reef recovery. Curr Biol 16:2434–2439

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. Bellwood DR, Hoey AS, Hughes TP (2012) Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc Biol Sci 279:1621–1629

    PubMed  PubMed Central  Google Scholar 

  10. Ben Rais Lasram F, Guilhaumon F, Albouy C, Somot S, Thuiller W, Mouillot D (2010) The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob Chang Biol 16:3233–3245

    Article  Google Scholar 

  11. Bessey C, Keesing JK, McLaughlin J, Rees M, Tonks M, Kendrick GA, Olsen YS (2019) Teleost community composition and the role of herbivory on the intertidal reef of a small isolated island in north-west Australia. Mar Freshw Res 71:648–696

    Google Scholar 

  12. Bonaldo RM, Pires MM, Roberto P, Hoey S, Hay ME (2017) Small marine protected areas in Fiji provide refuge for reef fish assemblages, feeding groups, and corals. PLoS ONE 12:e0170638

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KRW, Bak RPM, Vermeij MJA, Hoegh-Guldberg O (2015) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Rep 5:7652

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Brokovich E, Ayalon I, Einbinder S, Segev N, Shaked Y, Genin A, Kark S, Kiflawi M (2010) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 399:69–80

    Article  Google Scholar 

  15. Bruno JF, Isabelle M, Toth L (2019) Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Ann Rev Mar Sci 11:307–334

    PubMed  Article  PubMed Central  Google Scholar 

  16. Brunsdon C, Fotheringham AS, Charlton ME (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28:281–298

    Article  Google Scholar 

  17. Burkepile DE, Hay ME (2010) Impact of herbivore identity on algal succession and coral growth on a Caribbean reef. PLoS ONE 5:e8963

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, Berlin, New York

    Google Scholar 

  19. Cappo M, De’ath G, Speare P, (2007) Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations. Mar Ecol Prog Ser 350:209–221

    Article  Google Scholar 

  20. Carassou L, Léopold M, Guillemot N, Wantiez L, Kulbicki M (2013) Does Herbivorous Fish Protection Really Improve Coral Reef Resilience? A Case Study from New Caledonia (South Pacific). PLoS ONE 8:e60564

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, Devantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Ja M, Obura DO, Ochavillo D, Ba P, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Chabanet P (2002) Coral reef fish communities of Mayotte (western Indian Ocean) two years after the impact of the 1998 bleaching event. Mar Freshw Res 53:107–114

    Article  Google Scholar 

  23. Cheal AJ, Emslie M, MacNeil A, Miller I, Sweatman H (2013) Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol Appl 23:174–188

    PubMed  Article  PubMed Central  Google Scholar 

  24. Choat JH, Clements KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs I: Dietary analyses. Mar Biol 140:613–623

    CAS  Article  Google Scholar 

  25. Choat JH, Robbins WD, Clements KD (2004) The trophic status of herbivorous fishes on coral reefs II. Food processing modes and trophodynamics. Mar Biol 145:445–454

    Article  Google Scholar 

  26. Clements KD, Choat JH (1995) Fermentation in Tropical Marine Herbivorous Fishes. Physiol Zool 68:355–378

    CAS  Article  Google Scholar 

  27. Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23:79–92

    Article  Google Scholar 

  28. Costantini F, Rossi S, Pintus E, Cerrano C, Gili JM, Abbiati M (2011) Low connectivity and declining genetic variability along a depth gradient in Corallium rubrum populations. Coral Reefs 30:991–1003

    Article  Google Scholar 

  29. Crossman D, Choat JH, Clements KD, Hardy T, McConochie J (2001) Detritus as food for grazing fishes on coral reefs. Limnol Oceanogr 46:1596–1605

    Article  Google Scholar 

  30. Ellis D, DeMartini E (1995) Evaluation of a video camera technique for indexing abundances of juvenile pink snapper, Pristipomoides filamentosus, and other Hawaiian insular shelf fishes. Fish Bull 93:67–77

    Google Scholar 

  31. Fisher R, Wilson SK, Sin TM, Lee AC, Langlois TJ (2018) A simple function for full-subsets multiple regression in ecology with R. Ecol Evol 8:6104–6113

    PubMed  PubMed Central  Article  Google Scholar 

  32. Fox RJ, Bellwood DR (2007) Quantifying herbivory across a coral reef depth gradient. Mar Ecol Prog Ser 339:49–59

    Article  Google Scholar 

  33. Fox RJ, Sunderland TL, Hoey AS, Bellwood DR (2009) Estimating ecosystem function: contrasting roles of closely related herbivorous rabbitfishes (Siganidae) on coral reefs. Mar Ecol Prog Ser 385:261–269

    Article  Google Scholar 

  34. Fulton EA (2011) Interesting times: winners, losers, and system shifts under climate change around Australia. ICES J Mar Sci 68:1329–1342

    Article  Google Scholar 

  35. Garpe KC, Yahya SAS, Lindahl U, Ohman MC (2006) Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar Ecol Prog Ser 315:237–247

    Article  Google Scholar 

  36. Gilby BL, Tibbetts IR, Stevens T (2016) Low functional redundancy and high variability in Sargassum browsing fish populations in a subtropical reef system. Mar Freshw Res 68:331–341

    Article  Google Scholar 

  37. Goetze JS, Langlois TJ, McCarter J, Simpfendorfer CA, Hughes A, Leve JT, Jupiter SD (2018) Drivers of reef shark abundance and biomass in the Solomon Islands. PlosONE 13:e0200960

    Article  CAS  Google Scholar 

  38. Graham NAJ, Cinner JE, Norström AV, Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustain 7:9–14

    Article  Google Scholar 

  39. Green AL, Bellwood DR (2009) Monitoring functional groups of herbivorous reef fishes as indicators of coral reef resilience- A practical guide for coral reef managers in the Asia Pacific region. IUCN working group on Climate Change and Coral Reefs, IUCN, Gland, Switzerland

    Google Scholar 

  40. Harvey ES, Cappo M, Butler JJ, Hall N, Kendrick GA (2007) Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar Ecol Prog Ser 350:245–254

    Article  Google Scholar 

  41. Heenan A, Williams ID (2013) Monitoring herbivorous fishes as indicators of coral reef resilience in American Samoa. PLoS ONE 8:e79604

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Heenan A, Hoey AS, Williams GJ, Williams ID (2016) Natural bounds on herbivorous coral reef fishes. Proc R Soc B Biol Sci 283:20161716

    Article  Google Scholar 

  43. Henderson CJ, Olds AD, Lee SY, Gilby BL, Maxwell PS, Connolly RM, Stevens T (2017) Marine reserves and seascape context shape fish assemblages in seagrass ecosystems. Mar Ecol Prog Ser 566:135–144

    Article  Google Scholar 

  44. Heyward A, Wakeford M, Currey-Randall L, Colquhoun J, Galaiduk R, Fisher R, Menendez P, Case M, Radford B, Stowar M, Vaughan B, Cure K, Birt M (2018) Quantitative information on the abundance, diversity and temporal variability of benthos and associated fish – Browse Island reef. Australian Institute of Marine Science, Perth, Australia

    Google Scholar 

  45. Hijmans RJ, van Etten J (2012) raster: Geographic analysis and modeling with raster data. R package version 2.0–12

  46. Hoey AS, Bellwood DR (2008) Cross-shelf variation in the role of parrotfishes on the great barrier reef. Coral Reefs 27:37–47

    Article  Google Scholar 

  47. Holmes KW, Van Niel KP, Radford B, Kendrick GA, Grove SL (2008) Modelling distribution of marine benthos from hydroacoustics and underwater video. Cont Shelf Res 28:1800–1810

    Article  Google Scholar 

  48. Hughes TP, Bellwood DR, Folke C, Steneck RS, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20:380–386

    PubMed  Article  PubMed Central  Google Scholar 

  49. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. Johansson CL, Bellwood DR, Depczynski M (2012) The importance of live coral for small-sized herbivorous reef fishes in physically challenging environments. Mar Freshw Res 63:672–679

    Article  Google Scholar 

  51. Kahng SE, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  52. Langlois TJ, Harvey ES, Meeuwig JJ (2012) Strong direct and inconsistent indirect effects of fishing found using stereo-video: Testing indicators from fisheries closures. Ecol Indic 23:524–534

    Article  Google Scholar 

  53. Langlois TJ, Harvey E, Fitzpatrick B, Meeuwig J, Shedrawi G, Watson D (2010) Cost-efficient sampling of fish assemblages: comparison of baited video stations and diver video transects. Aquat Biol 9:155–168

    Article  Google Scholar 

  54. Langlois TJ, Bellchambers L, Fisher R, Shiell G, Goetze J, Fullwood L, Evans S, Konzewitsch N, Harvey ES, Pember M (2017) Investigating ecosystem processes using targeted fisheries closures: can small-bodied invertivore fish be used as indicators for the effects of western rock lobster fishing? Mar Freshw Res 68:1251–1259

    Article  Google Scholar 

  55. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  56. Lehmann A, Overton JM, Leathwick JR (2002) GRASP: generalized regression analysis and spatial prediction. Ecol Modell 157:189–207

    Article  Google Scholar 

  57. Leichter JJ, Stokes MD, Genovese SJ (2008) Deep water macroalgal communities adjacent to the Florida Keys reef tract. Mar Ecol Prog Ser 356:123–138

    Article  Google Scholar 

  58. Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1868

    Article  Google Scholar 

  59. Lindfield SJ, Harvey ES, Halford AR, Mcilwain JL (2016) Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35:125–137

    Article  Google Scholar 

  60. Lowe JR, Williamson DH, Ceccarelli DM, Evans RD, Russ GR (2019) Responses of coral reef wrasse assemblages to disturbance and marine reserve protection on the great barrier reef. Mar Biol 166:1–21

    Article  Google Scholar 

  61. McLean DL, Vaughan BI, Malseed BE, Taylor MD (2020) Fish-habitat associations on a subsea pipeline within an Australian Marine Park. Mar Environ Res 153:104813

    CAS  Article  Google Scholar 

  62. Nyström M, Folke C, Moberg F (2000) Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol Evol 15:413–417

    PubMed  Article  PubMed Central  Google Scholar 

  63. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. Pinheiro H, Goodbody-Gringley G, Jessup M, Shepherd B, Chequer A, Rocha L (2016) Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35:139–151

    Article  Google Scholar 

  65. Poloczanska ES, Burrows MT, Brown CJ, Garcia J, Halpern BS, Hoegh-guldberg O, Kappel CV, Moore PJ, Richardson AJ, Schoeman DS, Sydeman WJ (2016) Responses of marine organisms to climate change across oceans. Front Mar Sci 3:1–21

    Article  Google Scholar 

  66. Potts JM, Elith J (2006) Comparing species abundance models. Ecol Modell 199:153–163

    Article  Google Scholar 

  67. Puk LD, Ferse SCA, Wild C (2016) Patterns and trends in coral reef macroalgae browsing: a review of browsing herbivorous fishes of the Indo-Pacific. Rev Fish Biol Fish 26:53–70

    Article  Google Scholar 

  68. R Development Core Team R (2014) R: A language and environment for statistical computing. R Found Stat Comput 1:409

    Google Scholar 

  69. Rocha LA, Pinheiro HT, Shepherd B, Papastamatiou YP, Luiz O, Pyle R, Bongaerts P (2018) Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361:281–284

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. Ruppert JL, Travers MJ, Smith LL, Fortin M-J, Meekan MG (2013) Caught in the middle: combined impacts of shark removal and coral loss on the fish communities of coral reefs. PLoS ONE 8:e74648

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Russ GR (2003) Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22:63–67

    Article  Google Scholar 

  72. Russell BD, Connell SD (2005) A novel interaction between nutrients and grazers alters relative dominance of marine habitats. Mar Ecol Prog Ser 289:5–11

    CAS  Article  Google Scholar 

  73. Sagarin RD, Gaines SD, Gaylord B (2006) Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends Ecol Evol 21:524–530

    PubMed  Article  Google Scholar 

  74. Smith T, Glynn P, Maté J, Toth L, Gyory J (2014) A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95:1663–1673

    PubMed  Article  Google Scholar 

  75. Stefanoudis PV, Gress E, Pitt JM, Smith SR, Kincaid T, Rivers M, Andradi-Brown DA, Rowlands G, Woodall LC, Rogers AD (2019) Depth-dependent structuring of reef fish assemblages from the shallows to the rariphotic zone. Front Mar Sci 6:1–16

    Article  Google Scholar 

  76. Steneck RS, David R, Hay ME (2017) Herbivory in the marine realm. Curr Biol 27:484–489

    Article  CAS  Google Scholar 

  77. Taylor BM, Benkwitt CE, Choat JH, Clements KD, Graham NAJ, Meekan MG (2019) Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob Chang Biol 26:1285–1294

    PubMed  Article  Google Scholar 

  78. Thibaut LM, Connolly SR, Sweatman HP (2012) Diversity and stability of herbivorous fishes on coral reefs. Ecology 93:891–901

    PubMed  Article  Google Scholar 

  79. Van Oppen MJH, Bongaerts P, Underwood J, Peplow LM, Coopers TF (2011) The role of deep reefs in shallow reef recovery: an assessment of vertical connectivity in a brooding coral from west and east Australia. Mol Ecol 20:1647–1660

    PubMed  Article  Google Scholar 

  80. Vaz A, Paris C, Olascoaga M, Kourafalou V, Kang H, Reed J (2016) The perfect storm: Match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge mesophotic reef and the Florida Keys. Cont Shelf Res 125:136–146

    Article  Google Scholar 

  81. Venegas RM, Oliver T, Liu G, Heron SF, Clark J, Pomeroy N, Young C, Eakin MC, Brainard RE (2019) The Rarity of Depth Refugia from Coral Bleaching Heat Stress in the Western and Central Pacific Islands. Sci Rep 9:19710

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Vercelloni J, Liquet B, Kennedy EV, González-Rivero M, Caley MJ, Peterson EE, Puotinen M, Hoegh-Guldberg O, Mengersen K (2020) Forecasting intensifying disturbance effects on coral reefs. Glob Chang Biol 26:2785–2797

    PubMed  Article  Google Scholar 

  83. Vergés A, Bennett S, Bellwood DR (2012) Diversity among Macroalgae-Consuming Fishes on Coral Reefs: A Transcontinental Comparison. PLoS ONE 7:e45543

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. Walker BH (1992) Biodiversity and Ecological Redundancy Cons Biol 6:18–23

    Google Scholar 

  85. Watson DL, Harvey ES, Fitzpatrick BM, Langlois TJ, Shedrawi G (2010) Assessing reef fish assemblage structure: How do different stereo-video techniques compare? Mar Biol 157:1237–1250

    Article  Google Scholar 

  86. Willis T, Babcock R (2000) A baited underwater video system for the determination of relative density of carnivorous reef fish. Mar Freshw Res 51:755–763

    Article  Google Scholar 

  87. Wilson SK, Graham NAJ, Polunin NV (2007) Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar Biol 151:1069–1076

    Article  Google Scholar 

  88. Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Plunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234

    Article  Google Scholar 

  89. Wismer S, Hoey AS, Bellwood DR (2009) Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser 376:45–54

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the crew of the RV Solander, B. Vaughan, M. Stowar, J. Colquhoun, M. Chinkin and M. Birt for data collection, J.H. Choat and M. Abdul-Wahab for discussions, and the financial support of Shell Australia Pty Limited and the INPEX-operated Ichthys LNG Project in conducting this research. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katherine Cure.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic editor: Dr. Alastair Harborne

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17,653 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cure, K., Currey-Randall, L., Galaiduk, R. et al. Depth gradients in abundance and functional roles suggest limited depth refuges for herbivorous fishes. Coral Reefs (2021). https://doi.org/10.1007/s00338-021-02060-7

Download citation

Keywords

  • Mesophotic
  • Climate change
  • Herbivores
  • Functional groups
  • Functional redundancy
  • Depth distribution