Principles for estimating fish productivity on coral reefs

Abstract

Coral reefs provide major nutritional inputs to humans through fish production. Yet, our capacity to adequately assess fish productivity in these and other high-diversity aquatic systems is hampered by a lack of computationally accessible methods with realistic data requirements. Standing stock biomass is often assumed to reflect biomass productivity, yet theoretical and empirical evidence question this assumption. These methodological hurdles have stymied progress in managing this critical coral reef function, potentially jeopardising the future of many small-scale tropical fisheries struggling to respond to global changes. Here, we summarise the physiological and ecological processes that lead to the production of fish biomass. We outline principles and present a robust framework for quantifying fish productivity in high-diversity ecosystems that overcomes these shortcomings by integrating readily accessible individual-level data (e.g. from visual counts) with growth trajectories and predicted mortality rates. This framework provides fisheries-independent estimates of multispecies fish productivity without the need to specify often unknown detailed trophic relationships. We delineate five simple steps and provide a critical user-friendly interface (an easy-to-use R package) to make the calculation of fish productivity a readily accessible tool for coral reef scientists and managers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237

    Google Scholar 

  2. Allen AP, Gillooly JF (2009) Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol Lett 12:369–384

    PubMed  Google Scholar 

  3. Allen KR (1971) Relation between Production and Biomass. J Fish Res Board Canada 28:1573–1581

    Google Scholar 

  4. Allgeier JE, Speare KE, Burkepile DE (2018) Estimates of fish and coral larvae as nutrient subsidies to coral reef ecosystems. Ecosphere 9:

  5. Almany GR, Planes S, Thorrold SR, Berumen ML, Bode M, Saenz-Agudelo P, Bonin MC, Frisch AJ, Harrison HB, Messmer V, Nanninga GB, Priest MA, Srinivasan M, Sinclair-Taylor T, Williamson DH, Jones GP (2017) Larval fish dispersal in a coral-reef seascape. Nat Ecol Evol 1:1–7

    Google Scholar 

  6. Almany GR, Webster MS (2006) The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs 25:19–22

    Google Scholar 

  7. Arias-González JE, Delesalle B, Salvat B, Galzin R (1997) Trophic functioning of the Tiahura reef sector, Moorea Island, French Polynesia. Coral Reefs 16:231–246

    Google Scholar 

  8. Barneche DR, Allen AP (2018) The energetics of fish growth and how it constrains food-web trophic structure. Ecol Lett 21:836–844

    PubMed  Google Scholar 

  9. Barneche DR, Kulbicki M, Floeter SR, Friedlander AM, Maina J, Allen AP (2014) Scaling metabolism from individuals to reef-fish communities at broad spatial scales. Ecol Lett 17:1067–1076

    CAS  PubMed  Google Scholar 

  10. Bellwood DR (1988) Seasonal changes in the size and composition of the fish yield from reefs around Apo Island, Central Philippines, with notes on methods of yield estimation. J Fish Biol 32:881–893

    Google Scholar 

  11. Bellwood DR, Pratchett MS, Morrison TH, Gurney GG, Hughes TP, Álvarez-Romero JG, Day JC, Grantham R, Grech A, Hoey AS, Jones GP, Pandolfi JM, Tebbett SB, Techera E, Weeks R, Cumming GS (2019) Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol Conserv

  12. Benkwitt CE, Wilson SK, Graham NAJ (2020) Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat Ecol Evol 24:1–8

    Google Scholar 

  13. Beverton RJH, Holt SJ (1957) On the Dynamics of Exploited Fish Populations. Springer, Netherlands

    Google Scholar 

  14. Blanchard JL, Jennings S, Law R, Castle MD, McCloghrie P, Rochet MJ, Benoît E (2009) How does abundance scale with body size in coupled size-structured food webs? J Anim Ecol 78:270–280

    PubMed  Google Scholar 

  15. Bozec Y-M, O’Farrell S, Bruggemann JH, Luckhurst BE, Mumby PJ (2016) Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc Natl Acad Sci 113:4536–4541

    CAS  PubMed  Google Scholar 

  16. Brandl SJ, Rasher DB, Côté IM, Casey JM, Darling ES, Lefcheck JS, Duffy JE (2019a) Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front Ecol Environ 17:445–454

    Google Scholar 

  17. Brandl SJ, Tornabene L, Goatley CHR, Casey JM, Morais RA, Côté IM, Baldwin CC, Parravicini V, Schiettekatte NMD, Bellwood DR (2019b) Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science (80-) 364:1189–1192

  18. Brock RE, Lewis C, Wass RC (1979) Stability and structure of a fish community on a coral patch reef in Hawaii. Mar Biol 54:281–292

    Google Scholar 

  19. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a Metabolic Theory of Ecology. Ecology 85:1771–1789

    Google Scholar 

  20. Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500

    Google Scholar 

  21. Choat JH, Axe LM (1996) Growth and longevity in acanthurid fishes; an analysis of otolith increments. Mar Ecol Prog Ser 134:15–26

    Google Scholar 

  22. Choat JH, Axe LM, Lou DC (1996) Growth and longevity in fishes of the family Scaridae. Mar Ecol Prog Ser 145:33–41

    Google Scholar 

  23. Choat JH, Robertson DR (2002) Age-Based Studies. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, Burlington, pp 57–80

    Google Scholar 

  24. Christensen V, Pauly D (1992) ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Modell 61:169–185

    Google Scholar 

  25. Cinner JE (2014) Coral reef livelihoods. Curr Opin Environ Sustain 7:65–71

    Google Scholar 

  26. Clarke A (2019) Energy Flow in Growth and Production. Trends Ecol Evol 34:502–509

    PubMed  Google Scholar 

  27. Condy M, Cinner JE, McClanahan TR, Bellwood DR (2015) Projections of the impacts of gear-modification on the recovery of fish catches and ecosystem function in an impoverished fishery. Aquat Conserv Mar Freshw Ecosyst 25:396–410

    Google Scholar 

  28. Dalzell P, Adams TJH, Polunin NVC (1996) Coastal fisheries in the Pacific Islands. Oceanogr Mar Biol an Annu Rev 34:395–531

    Google Scholar 

  29. Deines AM, Bunnell DB, Rogers MW, Bennion D, Woelmer W, Sayers MJ, Grimm AG, Shuchman RA, Raymer ZB, Brooks CN, Mychek-Londer JG, Taylor W, Beard TD (2017) The contribution of lakes to global inland fisheries harvest. Front Ecol Environ 15:293–298

    Google Scholar 

  30. Depczynski M, Bellwood DR (2005) Shortest recorded vertebrate lifespan found in a coral reef fish. Curr Biol 15:R288–R289

    CAS  PubMed  Google Scholar 

  31. Depczynski M, Bellwood DR (2006) Extremes, plasticity, and invariance in vertebrate life history traits: insights from coral reef fishes. Ecology 87:3119–3127

    PubMed  Google Scholar 

  32. Depczynski M, Fulton CJ, Marnane MJ, Bellwood DR (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120

    PubMed  Google Scholar 

  33. Dickens LC, Goatley CHR, Tanner JK, Bellwood DR (2011) Quantifying relative diver effects in underwater visual censuses. PLoS One 6:e18965

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Doherty PJ (1991) Spatial and Temporal Patterns in Recruitment. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 261–293

    Google Scholar 

  35. Dulvy NK, Polunin NVC, Mill AC, Graham NAJ (2004) Size structural change in lightly exploited coral reef fish communities: evidence for weak indirect effects. Can J Fish Aquat Sci 61:466–475

    Google Scholar 

  36. Embke HS, Rypel AL, Carpenter SR, Sass GG, Ogle D, Cichosz T, Hennessy J, Essington TE, Jake Vander Zanden M (2019) Production dynamics reveal hidden overharvest of inland recreational fisheries. Proc Natl Acad Sci U S A 116:24676–24681

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Emslie MJ, Cheal AJ, MacNeil MA, Miller IR, Sweatman HPA (2018) Reef fish communities are spooked by scuba surveys and may take hours to recover. PeerJ 6:e4886

    PubMed  PubMed Central  Google Scholar 

  38. Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Bio Ecol 224:1–30

    Google Scholar 

  39. Froese R (2006) Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J Appl Ichthyol 22:241–253

    Google Scholar 

  40. Froese R, Pauly D (2018) FishBase

  41. Gislason H, Daan N, Rice JC, Pope JG (2010) Size, growth, temperature and the natural mortality of marine fish. Fish Fish 11:149–158

    Google Scholar 

  42. Goatley CHR, Bellwood DR (2016) Body size and mortality rates in coral reef fishes: a three-phase relationship. Proc R Soc B Biol Sci 283:20161858

    Google Scholar 

  43. Grutter AS, Blomberg SP, Fargher B, Kuris AM, McCormick MI, Warner RR (2017) Size-related mortality due to gnathiid isopod micropredation correlates with settlement size in coral reef fishes. Coral Reefs 36:549–559

    Google Scholar 

  44. Hart AM, Russ GR (1996) Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. III. Age, growth, mortality and maturity indices of Acanthurus nigrofuscus. Mar Ecol Prog Ser 136:25–35

    Google Scholar 

  45. Harvey E, Fletcher D, Shortis M (2002) Estimation of reef fish length by divers and by stereo-video. Fish Res 57:255–265

    Google Scholar 

  46. Heenan A, Williams GJ, Williams ID (2019) Natural variation in coral reef trophic structure across environmental gradients. Front Ecol Environ 1–7

  47. Hemingson CR, Bellwood DR (2018) Biogeographic patterns in major marine realms: function not taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography (Cop) 41:174–182

    Google Scholar 

  48. Hilborn R, Walters CJ (1992) Quantitative Fisheries Stock Assessment. Springer, Boston

    Google Scholar 

  49. Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29(2):253–268

    Google Scholar 

  50. Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    CAS  PubMed  Google Scholar 

  51. Jacobsen NS, Gislason H, Andersen KH (2014) The consequences of balanced harvesting of fish communities. Proc R Soc B Biol Sci 281:20132701

    Google Scholar 

  52. Jenkins DG (2015) Estimating ecological production from biomass. Ecosphere 6:art49

  53. Jennings S, Blanchard JL (2004) Fish abundance with no fishing: predictions based on macroecological theory. J Anim Ecol 73:632–642

    Google Scholar 

  54. Jennings S, Lock JM (1996) Population and ecosystem effects of reef fishing. Reef fisheries. Springer, pp 193–218

  55. Jennings S, Polunin NVC (1996) Effects of Fishing Effort and Catch Rate Upon the Structure and Biomass of Fijian Reef Fish Communities. J Appl Ecol 33:400

    Google Scholar 

  56. Jørgensen C, Holt RE (2013) Natural mortality: its ecology, how it shapes fish life histories, and why it may be increased by fishing. J Sea Res 75:8–18

    Google Scholar 

  57. Kingsford MJ, O’Callaghan MD, Liggins L, Gerlach G (2017) The short-lived neon damsel Pomacentrus coelestis: implications for population dynamics. J Fish Biol 90:2041–2059

    CAS  PubMed  Google Scholar 

  58. Lynch AJ, Cooke SJ, Deines AM, Bower SD, Bunnell DB, Cowx IG, Nguyen VM, Nohner J, Phouthavong K, Riley B, Rogers MW, Taylor WW, Woelmer W, Youn S-J, Beard TD (2016) The social, economic, and environmental importance of inland fish and fisheries. Environ Rev 24:115–121

    Google Scholar 

  59. MacNeil MA, Graham NAJ, Cinner JE, Wilson SK, Williams ID, Maina J, Newman S, Friedlander AM, Jupiter S, Polunin NVC, McClanahan TR (2015) Recovery potential of the world’s coral reef fishes. Nature 520:341–344

    CAS  PubMed  Google Scholar 

  60. McCann KS, Gellner G, McMeans BC, Deenik T, Holtgrieve G, Rooney N, Hannah L, Cooperman M, Nam S (2016) Food webs and the sustainability of indiscriminate fisheries. Can J Fish Aquat Sci 73:656–665

    CAS  Google Scholar 

  61. McCauley DJ, Young HS, Dunbar RB, Estes JA, Semmens BX, Micheli F (2012) Assessing the effects of large mobile predators on ecosystem connectivity. Ecol Appl 22:1711–1717

    PubMed  Google Scholar 

  62. McClanahan TR (2018) Community biomass and life history benchmarks for coral reef fisheries. Fish Fish 19:471–488

    Google Scholar 

  63. McClanahan TR, Graham NAJ, MacNeil MA, Cinner JE (2014) Biomass-based targets and the management of multispecies coral reef fisheries. Conserv Biol 29:409–417

    PubMed  Google Scholar 

  64. Meekan M, Milicich M, Doherty P (1993) Larval production drives temporal patterns of larval supply and recruitment of a coral reef damselfish. Mar Ecol Prog Ser 93:217–225

    Google Scholar 

  65. Morais RA, Bellwood DR (2018) Global drivers of reef fish growth. Fish Fish 19:874–889

    Google Scholar 

  66. Morais RA, Bellwood DR (2019) Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr Biol 29:1521–1527

    CAS  PubMed  Google Scholar 

  67. Morais RA, Connolly SR, Bellwood DR (2020) Human exploitation shapes productivity–biomass relationships on coral reefs. Glob Chang Biol In press:gcb.14941

  68. Mourier J, Maynard J, Parravicini V, Ballesta L, Clua E, Domeier ML, Planes S (2016) Extreme Inverted Trophic Pyramid of Reef Sharks Supported by Spawning Groupers. Curr Biol 26:2011–2016

    CAS  PubMed  Google Scholar 

  69. Munro JL, Williams DM (1985) Assessment and managements of coral reef fishes: biological, environmental and socio-economic aspects. Proc Fifth Int Coral Reef Symp 4:544–581

    Google Scholar 

  70. Nash KL, Graham NAJ (2016) Ecological indicators for coral reef fisheries management. Fish Fish 17:1029–1054

    Google Scholar 

  71. Newton K, Côté IM, Pilling GM, Jennings S, Dulvy NK (2007) Current and Future Sustainability of Island Coral Reef Fisheries. Curr Biol 17:655–658

    CAS  PubMed  Google Scholar 

  72. Norström AV, Nyström M, Jouffray JB, Folke C, Graham NAJ, Moberg F, Olsson P, Williams GJ (2016) Guiding coral reef futures in the Anthropocene. Front Ecol Environ 14:490–498

    Google Scholar 

  73. Nunes LT, Morais RA, Longo O, Sabino J, Floeter SR (2020) Habitat and community structure modulate fish interactions in a neotropical clearwater river. Neotrop Ichthyol 18:1–20

    Google Scholar 

  74. Pauly D (1980) On the Interrelationships between Natural Mortality, Growth Parameters, and Mean Environmental Temperature in 175 Fish Stocks. ICES J Mar Sci 39:175–192

    Google Scholar 

  75. Pella JJ, Tomlinson PK (1969) A generalized stock production model. IATTC Bull 13:83

    Google Scholar 

  76. Polovina JJ (1984) Coral Reefs Model of a Coral Reef Ecosystem. Coral Reefs 3:1–11

    Google Scholar 

  77. Polunin NVC (1996) Trophodynamics of reef fisheries productivity. In: Polunin NVC, Roberts CM (eds) reef fisheries. Springer, Netherlands, pp 113–135

    Google Scholar 

  78. Randall JE (1997) Fishes of the Great Barrier Reef and Coral Sea. University of Hawai’i Press, Honolulu

    Google Scholar 

  79. Ricker WE (1946) Production and Utilization of Fish Populations. Ecol Monogr 16:373–391

    Google Scholar 

  80. Ricker WE (1954) Stock and Recruitment. J Fish Res Board Canada 11:559–623

    Google Scholar 

  81. Robertson DR (1990) Differences in the seasonalities of spawning and recruitment of some small neotropical reef fishes. J Exp Mar Bio Ecol 144:49–62

    Google Scholar 

  82. Robertson DR (2008) Global biogeographical data bases on marine fishes: caveat emptor. Divers Distrib 14:891–892

    Google Scholar 

  83. Robinson JPW, Williams ID, Edwards AM, McPherson J, Yeager L, Vigliola L, Brainard RE, Baum JK (2017) Fishing degrades size structure of coral reef fish communities. Glob Chang Biol 23:1009–1022

    PubMed  Google Scholar 

  84. Robinson JPW, Wilson SK, Robinson J, Gerry C, Lucas J, Assan C, Govinden R, Jennings S, Graham NAJ (2019) Productive instability of coral reef fisheries after climate-driven regime shifts. Nat Ecol Evol 3:183–190

    PubMed  Google Scholar 

  85. Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a loss of structural complexity. Curr Biol 24:1000–1005

    CAS  PubMed  Google Scholar 

  86. Rogers A, Blanchard JL, Mumby PJ (2018a) Fisheries productivity under progressive coral reef degradation. J Appl Ecol 55:1041–1049

    Google Scholar 

  87. Rogers A, Blanchard JL, Newman SP, Dryden CS, Mumby PJ (2018b) High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation. Ecology 99:450–463

    PubMed  Google Scholar 

  88. Russ GR, Alcala AC (2003) Marine reserves: rates and patterns of recovery and decline of predatory fish, 1983–2000. Ecol Appl 13:1553–1565

    Google Scholar 

  89. Russ GR, Stockwell B, Alcala AC (2005) Inferring versus measuring rates of recovery in no-take marine reserves. Mar Ecol Prog Ser 292:1–12

    Google Scholar 

  90. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One 3:e1548

    PubMed  PubMed Central  Google Scholar 

  91. Schnute JT, Richards L (2002) Surplus production models. In: Reynolds P.H.& J. (eds) Handbook of Fish Biology & Fisheries. Blackwell Publishing Ltd, pp 105–126

  92. Takeuchi Y, Ochi H, Kohda M, Sinyinza D, Hori M (2010) A 20-year census of a rocky littoral fish community in Lake Tanganyika. Ecol Freshw Fish 19:239–248

    Google Scholar 

  93. Thillainath EC, McIlwain JL, Wilson SK, Depczynski M (2016) Estimating the role of three mesopredatory fishes in coral reef food webs at Ningaloo Reef, Western Australia. Coral Reefs 35:261–269

    Google Scholar 

  94. Thompson A, Mapstone B (1997) Observer effects and training in underwater visual surveys of reef fishes. Mar Ecol Prog Ser 154:53–63

    Google Scholar 

  95. Thorson JT, Cope JM, Patrick WS (2014) Assessing the quality of life history information in publicly available databases. Ecol Appl 24:217–226

    PubMed  Google Scholar 

  96. Thorson JT, Munch SB, Cope JM, Gao J (2017) Predicting life history parameters for all fishes worldwide. Ecol Appl 27:2262–2276

    PubMed  Google Scholar 

  97. Trebilco R, Baum JK, Salomon AK, Dulvy NK (2013) Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol Evol 28:423–431

    PubMed  Google Scholar 

  98. Victor BC (1986) Larval Settlement and Juvenile Mortality in a Recruitment-Limited Coral Reef Fish Population. Ecol Monogr 56:145–160

    Google Scholar 

  99. Ward-Paige C, Flemming JM, Lotze HK (2010) Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions. PLoS One 5:e11722

    PubMed  PubMed Central  Google Scholar 

  100. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D (2009) Rebuilding Global Fisheries. Science (80-) 325:578–585

  101. Yvon-Durocher G, Allen AP (2012) Linking community size structure and ecosystem functioning using metabolic theory. Philos Trans R Soc B Biol Sci 367:2998–3007

    Google Scholar 

  102. Zottoli J, Collie J, Fogarty M (2020) Measuring the balance between fisheries catch and fish production. Mar Ecol Prog Ser 643:145–158

    Google Scholar 

Download references

Acknowledgements

S. Connolly, M. Kulbicki, H. Choat, S. Brandl, D. Barneche, P. Narvaez, V. Huertas, A. Oakley-Cogan, M. Mihalitsis, A. Siqueira, S. Tebbett, R. Streit and C. Hemingson contributed with guidance, suggestions, criticisms and thought-provoking or reassuring discussions over the course of this work. J. L. Gasparini kindly provided photographs for Fig. 1, and J. Woerner, T. Saxby, K. Kraeer and L. Van Essen-Fishman created fish vectors (available through the Integration and Application Network—CES, University of Maryland). RAM was funded by a Lizard Island Doctoral Fellowship, HDR Competitive Research Grant and a James Cook University Postgraduate Research Scholarship. DRB was funded by the Australian Research Council through a Laureate Fellowship (FL190100062). We thank J.P.W. Robinson, D. Barneche and an anonymous reviewer for constructive comments on this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Renato A. Morais.

Ethics declarations

Conflict of interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Morgan S. Pratchett

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 894 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morais, R.A., Bellwood, D.R. Principles for estimating fish productivity on coral reefs. Coral Reefs (2020). https://doi.org/10.1007/s00338-020-01969-9

Download citation

Keywords

  • Ecosystem function
  • Coral reef functioning
  • Somatic growth
  • Mortality rates
  • Rfishprod
  • Reef fishes
  • Reef fisheries