Skip to main content
Log in

Principles for estimating fish productivity on coral reefs

  • Perspective
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral reefs provide major nutritional inputs to humans through fish production. Yet, our capacity to adequately assess fish productivity in these and other high-diversity aquatic systems is hampered by a lack of computationally accessible methods with realistic data requirements. Standing stock biomass is often assumed to reflect biomass productivity, yet theoretical and empirical evidence question this assumption. These methodological hurdles have stymied progress in managing this critical coral reef function, potentially jeopardising the future of many small-scale tropical fisheries struggling to respond to global changes. Here, we summarise the physiological and ecological processes that lead to the production of fish biomass. We outline principles and present a robust framework for quantifying fish productivity in high-diversity ecosystems that overcomes these shortcomings by integrating readily accessible individual-level data (e.g. from visual counts) with growth trajectories and predicted mortality rates. This framework provides fisheries-independent estimates of multispecies fish productivity without the need to specify often unknown detailed trophic relationships. We delineate five simple steps and provide a critical user-friendly interface (an easy-to-use R package) to make the calculation of fish productivity a readily accessible tool for coral reef scientists and managers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237

    Google Scholar 

  • Allen AP, Gillooly JF (2009) Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol Lett 12:369–384

    PubMed  Google Scholar 

  • Allen KR (1971) Relation between Production and Biomass. J Fish Res Board Canada 28:1573–1581

    Google Scholar 

  • Allgeier JE, Speare KE, Burkepile DE (2018) Estimates of fish and coral larvae as nutrient subsidies to coral reef ecosystems. Ecosphere 9:

  • Almany GR, Planes S, Thorrold SR, Berumen ML, Bode M, Saenz-Agudelo P, Bonin MC, Frisch AJ, Harrison HB, Messmer V, Nanninga GB, Priest MA, Srinivasan M, Sinclair-Taylor T, Williamson DH, Jones GP (2017) Larval fish dispersal in a coral-reef seascape. Nat Ecol Evol 1:1–7

    Google Scholar 

  • Almany GR, Webster MS (2006) The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs 25:19–22

    Google Scholar 

  • Arias-González JE, Delesalle B, Salvat B, Galzin R (1997) Trophic functioning of the Tiahura reef sector, Moorea Island, French Polynesia. Coral Reefs 16:231–246

    Google Scholar 

  • Barneche DR, Allen AP (2018) The energetics of fish growth and how it constrains food-web trophic structure. Ecol Lett 21:836–844

    PubMed  Google Scholar 

  • Barneche DR, Kulbicki M, Floeter SR, Friedlander AM, Maina J, Allen AP (2014) Scaling metabolism from individuals to reef-fish communities at broad spatial scales. Ecol Lett 17:1067–1076

    CAS  PubMed  Google Scholar 

  • Bellwood DR (1988) Seasonal changes in the size and composition of the fish yield from reefs around Apo Island, Central Philippines, with notes on methods of yield estimation. J Fish Biol 32:881–893

    Google Scholar 

  • Bellwood DR, Pratchett MS, Morrison TH, Gurney GG, Hughes TP, Álvarez-Romero JG, Day JC, Grantham R, Grech A, Hoey AS, Jones GP, Pandolfi JM, Tebbett SB, Techera E, Weeks R, Cumming GS (2019) Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol Conserv

  • Benkwitt CE, Wilson SK, Graham NAJ (2020) Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat Ecol Evol 24:1–8

    Google Scholar 

  • Beverton RJH, Holt SJ (1957) On the Dynamics of Exploited Fish Populations. Springer, Netherlands

    Google Scholar 

  • Blanchard JL, Jennings S, Law R, Castle MD, McCloghrie P, Rochet MJ, Benoît E (2009) How does abundance scale with body size in coupled size-structured food webs? J Anim Ecol 78:270–280

    PubMed  Google Scholar 

  • Bozec Y-M, O’Farrell S, Bruggemann JH, Luckhurst BE, Mumby PJ (2016) Tradeoffs between fisheries harvest and the resilience of coral reefs. Proc Natl Acad Sci 113:4536–4541

    CAS  PubMed  Google Scholar 

  • Brandl SJ, Rasher DB, Côté IM, Casey JM, Darling ES, Lefcheck JS, Duffy JE (2019a) Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front Ecol Environ 17:445–454

    Google Scholar 

  • Brandl SJ, Tornabene L, Goatley CHR, Casey JM, Morais RA, Côté IM, Baldwin CC, Parravicini V, Schiettekatte NMD, Bellwood DR (2019b) Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science (80-) 364:1189–1192

  • Brock RE, Lewis C, Wass RC (1979) Stability and structure of a fish community on a coral patch reef in Hawaii. Mar Biol 54:281–292

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a Metabolic Theory of Ecology. Ecology 85:1771–1789

    Google Scholar 

  • Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500

    Google Scholar 

  • Choat JH, Axe LM (1996) Growth and longevity in acanthurid fishes; an analysis of otolith increments. Mar Ecol Prog Ser 134:15–26

    Google Scholar 

  • Choat JH, Axe LM, Lou DC (1996) Growth and longevity in fishes of the family Scaridae. Mar Ecol Prog Ser 145:33–41

    Google Scholar 

  • Choat JH, Robertson DR (2002) Age-Based Studies. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, Burlington, pp 57–80

    Google Scholar 

  • Christensen V, Pauly D (1992) ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Modell 61:169–185

    Google Scholar 

  • Cinner JE (2014) Coral reef livelihoods. Curr Opin Environ Sustain 7:65–71

    Google Scholar 

  • Clarke A (2019) Energy Flow in Growth and Production. Trends Ecol Evol 34:502–509

    PubMed  Google Scholar 

  • Condy M, Cinner JE, McClanahan TR, Bellwood DR (2015) Projections of the impacts of gear-modification on the recovery of fish catches and ecosystem function in an impoverished fishery. Aquat Conserv Mar Freshw Ecosyst 25:396–410

    Google Scholar 

  • Dalzell P, Adams TJH, Polunin NVC (1996) Coastal fisheries in the Pacific Islands. Oceanogr Mar Biol an Annu Rev 34:395–531

    Google Scholar 

  • Deines AM, Bunnell DB, Rogers MW, Bennion D, Woelmer W, Sayers MJ, Grimm AG, Shuchman RA, Raymer ZB, Brooks CN, Mychek-Londer JG, Taylor W, Beard TD (2017) The contribution of lakes to global inland fisheries harvest. Front Ecol Environ 15:293–298

    Google Scholar 

  • Depczynski M, Bellwood DR (2005) Shortest recorded vertebrate lifespan found in a coral reef fish. Curr Biol 15:R288–R289

    CAS  PubMed  Google Scholar 

  • Depczynski M, Bellwood DR (2006) Extremes, plasticity, and invariance in vertebrate life history traits: insights from coral reef fishes. Ecology 87:3119–3127

    PubMed  Google Scholar 

  • Depczynski M, Fulton CJ, Marnane MJ, Bellwood DR (2007) Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153:111–120

    PubMed  Google Scholar 

  • Dickens LC, Goatley CHR, Tanner JK, Bellwood DR (2011) Quantifying relative diver effects in underwater visual censuses. PLoS One 6:e18965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty PJ (1991) Spatial and Temporal Patterns in Recruitment. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 261–293

    Google Scholar 

  • Dulvy NK, Polunin NVC, Mill AC, Graham NAJ (2004) Size structural change in lightly exploited coral reef fish communities: evidence for weak indirect effects. Can J Fish Aquat Sci 61:466–475

    Google Scholar 

  • Embke HS, Rypel AL, Carpenter SR, Sass GG, Ogle D, Cichosz T, Hennessy J, Essington TE, Jake Vander Zanden M (2019) Production dynamics reveal hidden overharvest of inland recreational fisheries. Proc Natl Acad Sci U S A 116:24676–24681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emslie MJ, Cheal AJ, MacNeil MA, Miller IR, Sweatman HPA (2018) Reef fish communities are spooked by scuba surveys and may take hours to recover. PeerJ 6:e4886

    PubMed  PubMed Central  Google Scholar 

  • Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Bio Ecol 224:1–30

    Google Scholar 

  • Froese R (2006) Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J Appl Ichthyol 22:241–253

    Google Scholar 

  • Froese R, Pauly D (2018) FishBase

  • Gislason H, Daan N, Rice JC, Pope JG (2010) Size, growth, temperature and the natural mortality of marine fish. Fish Fish 11:149–158

    Google Scholar 

  • Goatley CHR, Bellwood DR (2016) Body size and mortality rates in coral reef fishes: a three-phase relationship. Proc R Soc B Biol Sci 283:20161858

    Google Scholar 

  • Grutter AS, Blomberg SP, Fargher B, Kuris AM, McCormick MI, Warner RR (2017) Size-related mortality due to gnathiid isopod micropredation correlates with settlement size in coral reef fishes. Coral Reefs 36:549–559

    Google Scholar 

  • Hart AM, Russ GR (1996) Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. III. Age, growth, mortality and maturity indices of Acanthurus nigrofuscus. Mar Ecol Prog Ser 136:25–35

    Google Scholar 

  • Harvey E, Fletcher D, Shortis M (2002) Estimation of reef fish length by divers and by stereo-video. Fish Res 57:255–265

    Google Scholar 

  • Heenan A, Williams GJ, Williams ID (2019) Natural variation in coral reef trophic structure across environmental gradients. Front Ecol Environ 1–7

  • Hemingson CR, Bellwood DR (2018) Biogeographic patterns in major marine realms: function not taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography (Cop) 41:174–182

    Google Scholar 

  • Hilborn R, Walters CJ (1992) Quantitative Fisheries Stock Assessment. Springer, Boston

    Google Scholar 

  • Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29(2):253–268

    Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    CAS  PubMed  Google Scholar 

  • Jacobsen NS, Gislason H, Andersen KH (2014) The consequences of balanced harvesting of fish communities. Proc R Soc B Biol Sci 281:20132701

    Google Scholar 

  • Jenkins DG (2015) Estimating ecological production from biomass. Ecosphere 6:art49

  • Jennings S, Blanchard JL (2004) Fish abundance with no fishing: predictions based on macroecological theory. J Anim Ecol 73:632–642

    Google Scholar 

  • Jennings S, Lock JM (1996) Population and ecosystem effects of reef fishing. Reef fisheries. Springer, pp 193–218

  • Jennings S, Polunin NVC (1996) Effects of Fishing Effort and Catch Rate Upon the Structure and Biomass of Fijian Reef Fish Communities. J Appl Ecol 33:400

    Google Scholar 

  • Jørgensen C, Holt RE (2013) Natural mortality: its ecology, how it shapes fish life histories, and why it may be increased by fishing. J Sea Res 75:8–18

    Google Scholar 

  • Kingsford MJ, O’Callaghan MD, Liggins L, Gerlach G (2017) The short-lived neon damsel Pomacentrus coelestis: implications for population dynamics. J Fish Biol 90:2041–2059

    CAS  PubMed  Google Scholar 

  • Lynch AJ, Cooke SJ, Deines AM, Bower SD, Bunnell DB, Cowx IG, Nguyen VM, Nohner J, Phouthavong K, Riley B, Rogers MW, Taylor WW, Woelmer W, Youn S-J, Beard TD (2016) The social, economic, and environmental importance of inland fish and fisheries. Environ Rev 24:115–121

    Google Scholar 

  • MacNeil MA, Graham NAJ, Cinner JE, Wilson SK, Williams ID, Maina J, Newman S, Friedlander AM, Jupiter S, Polunin NVC, McClanahan TR (2015) Recovery potential of the world’s coral reef fishes. Nature 520:341–344

    CAS  PubMed  Google Scholar 

  • McCann KS, Gellner G, McMeans BC, Deenik T, Holtgrieve G, Rooney N, Hannah L, Cooperman M, Nam S (2016) Food webs and the sustainability of indiscriminate fisheries. Can J Fish Aquat Sci 73:656–665

    CAS  Google Scholar 

  • McCauley DJ, Young HS, Dunbar RB, Estes JA, Semmens BX, Micheli F (2012) Assessing the effects of large mobile predators on ecosystem connectivity. Ecol Appl 22:1711–1717

    PubMed  Google Scholar 

  • McClanahan TR (2018) Community biomass and life history benchmarks for coral reef fisheries. Fish Fish 19:471–488

    Google Scholar 

  • McClanahan TR, Graham NAJ, MacNeil MA, Cinner JE (2014) Biomass-based targets and the management of multispecies coral reef fisheries. Conserv Biol 29:409–417

    PubMed  Google Scholar 

  • Meekan M, Milicich M, Doherty P (1993) Larval production drives temporal patterns of larval supply and recruitment of a coral reef damselfish. Mar Ecol Prog Ser 93:217–225

    Google Scholar 

  • Morais RA, Bellwood DR (2018) Global drivers of reef fish growth. Fish Fish 19:874–889

    Google Scholar 

  • Morais RA, Bellwood DR (2019) Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr Biol 29:1521–1527

    CAS  PubMed  Google Scholar 

  • Morais RA, Connolly SR, Bellwood DR (2020) Human exploitation shapes productivity–biomass relationships on coral reefs. Glob Chang Biol In press:gcb.14941

  • Mourier J, Maynard J, Parravicini V, Ballesta L, Clua E, Domeier ML, Planes S (2016) Extreme Inverted Trophic Pyramid of Reef Sharks Supported by Spawning Groupers. Curr Biol 26:2011–2016

    CAS  PubMed  Google Scholar 

  • Munro JL, Williams DM (1985) Assessment and managements of coral reef fishes: biological, environmental and socio-economic aspects. Proc Fifth Int Coral Reef Symp 4:544–581

    Google Scholar 

  • Nash KL, Graham NAJ (2016) Ecological indicators for coral reef fisheries management. Fish Fish 17:1029–1054

    Google Scholar 

  • Newton K, Côté IM, Pilling GM, Jennings S, Dulvy NK (2007) Current and Future Sustainability of Island Coral Reef Fisheries. Curr Biol 17:655–658

    CAS  PubMed  Google Scholar 

  • Norström AV, Nyström M, Jouffray JB, Folke C, Graham NAJ, Moberg F, Olsson P, Williams GJ (2016) Guiding coral reef futures in the Anthropocene. Front Ecol Environ 14:490–498

    Google Scholar 

  • Nunes LT, Morais RA, Longo O, Sabino J, Floeter SR (2020) Habitat and community structure modulate fish interactions in a neotropical clearwater river. Neotrop Ichthyol 18:1–20

    Google Scholar 

  • Pauly D (1980) On the Interrelationships between Natural Mortality, Growth Parameters, and Mean Environmental Temperature in 175 Fish Stocks. ICES J Mar Sci 39:175–192

    Google Scholar 

  • Pella JJ, Tomlinson PK (1969) A generalized stock production model. IATTC Bull 13:83

    Google Scholar 

  • Polovina JJ (1984) Coral Reefs Model of a Coral Reef Ecosystem. Coral Reefs 3:1–11

    Google Scholar 

  • Polunin NVC (1996) Trophodynamics of reef fisheries productivity. In: Polunin NVC, Roberts CM (eds) reef fisheries. Springer, Netherlands, pp 113–135

    Google Scholar 

  • Randall JE (1997) Fishes of the Great Barrier Reef and Coral Sea. University of Hawai’i Press, Honolulu

    Google Scholar 

  • Ricker WE (1946) Production and Utilization of Fish Populations. Ecol Monogr 16:373–391

    Google Scholar 

  • Ricker WE (1954) Stock and Recruitment. J Fish Res Board Canada 11:559–623

    Google Scholar 

  • Robertson DR (1990) Differences in the seasonalities of spawning and recruitment of some small neotropical reef fishes. J Exp Mar Bio Ecol 144:49–62

    Google Scholar 

  • Robertson DR (2008) Global biogeographical data bases on marine fishes: caveat emptor. Divers Distrib 14:891–892

    Google Scholar 

  • Robinson JPW, Williams ID, Edwards AM, McPherson J, Yeager L, Vigliola L, Brainard RE, Baum JK (2017) Fishing degrades size structure of coral reef fish communities. Glob Chang Biol 23:1009–1022

    PubMed  Google Scholar 

  • Robinson JPW, Wilson SK, Robinson J, Gerry C, Lucas J, Assan C, Govinden R, Jennings S, Graham NAJ (2019) Productive instability of coral reef fisheries after climate-driven regime shifts. Nat Ecol Evol 3:183–190

    PubMed  Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a loss of structural complexity. Curr Biol 24:1000–1005

    CAS  PubMed  Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ (2018a) Fisheries productivity under progressive coral reef degradation. J Appl Ecol 55:1041–1049

    Google Scholar 

  • Rogers A, Blanchard JL, Newman SP, Dryden CS, Mumby PJ (2018b) High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation. Ecology 99:450–463

    PubMed  Google Scholar 

  • Russ GR, Alcala AC (2003) Marine reserves: rates and patterns of recovery and decline of predatory fish, 1983–2000. Ecol Appl 13:1553–1565

    Google Scholar 

  • Russ GR, Stockwell B, Alcala AC (2005) Inferring versus measuring rates of recovery in no-take marine reserves. Mar Ecol Prog Ser 292:1–12

    Google Scholar 

  • Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One 3:e1548

    PubMed  PubMed Central  Google Scholar 

  • Schnute JT, Richards L (2002) Surplus production models. In: Reynolds P.H.& J. (eds) Handbook of Fish Biology & Fisheries. Blackwell Publishing Ltd, pp 105–126

  • Takeuchi Y, Ochi H, Kohda M, Sinyinza D, Hori M (2010) A 20-year census of a rocky littoral fish community in Lake Tanganyika. Ecol Freshw Fish 19:239–248

    Google Scholar 

  • Thillainath EC, McIlwain JL, Wilson SK, Depczynski M (2016) Estimating the role of three mesopredatory fishes in coral reef food webs at Ningaloo Reef, Western Australia. Coral Reefs 35:261–269

    Google Scholar 

  • Thompson A, Mapstone B (1997) Observer effects and training in underwater visual surveys of reef fishes. Mar Ecol Prog Ser 154:53–63

    Google Scholar 

  • Thorson JT, Cope JM, Patrick WS (2014) Assessing the quality of life history information in publicly available databases. Ecol Appl 24:217–226

    PubMed  Google Scholar 

  • Thorson JT, Munch SB, Cope JM, Gao J (2017) Predicting life history parameters for all fishes worldwide. Ecol Appl 27:2262–2276

    PubMed  Google Scholar 

  • Trebilco R, Baum JK, Salomon AK, Dulvy NK (2013) Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol Evol 28:423–431

    PubMed  Google Scholar 

  • Victor BC (1986) Larval Settlement and Juvenile Mortality in a Recruitment-Limited Coral Reef Fish Population. Ecol Monogr 56:145–160

    Google Scholar 

  • Ward-Paige C, Flemming JM, Lotze HK (2010) Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions. PLoS One 5:e11722

    PubMed  PubMed Central  Google Scholar 

  • Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D (2009) Rebuilding Global Fisheries. Science (80-) 325:578–585

  • Yvon-Durocher G, Allen AP (2012) Linking community size structure and ecosystem functioning using metabolic theory. Philos Trans R Soc B Biol Sci 367:2998–3007

    Google Scholar 

  • Zottoli J, Collie J, Fogarty M (2020) Measuring the balance between fisheries catch and fish production. Mar Ecol Prog Ser 643:145–158

    Google Scholar 

Download references

Acknowledgements

S. Connolly, M. Kulbicki, H. Choat, S. Brandl, D. Barneche, P. Narvaez, V. Huertas, A. Oakley-Cogan, M. Mihalitsis, A. Siqueira, S. Tebbett, R. Streit and C. Hemingson contributed with guidance, suggestions, criticisms and thought-provoking or reassuring discussions over the course of this work. J. L. Gasparini kindly provided photographs for Fig. 1, and J. Woerner, T. Saxby, K. Kraeer and L. Van Essen-Fishman created fish vectors (available through the Integration and Application Network—CES, University of Maryland). RAM was funded by a Lizard Island Doctoral Fellowship, HDR Competitive Research Grant and a James Cook University Postgraduate Research Scholarship. DRB was funded by the Australian Research Council through a Laureate Fellowship (FL190100062). We thank J.P.W. Robinson, D. Barneche and an anonymous reviewer for constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato A. Morais.

Ethics declarations

Conflict of interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 894 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, R.A., Bellwood, D.R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020). https://doi.org/10.1007/s00338-020-01969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-01969-9

Keywords

Navigation