The influence of urban pressures on coral physiology on marginal coral reefs of the Mexican Pacific

Abstract

Coral ecosystems in the central Mexican Pacific inhabit environmental conditions considered as suboptimal for reef development, such as wide ranges in temperature, low pH, and cyclonic activity. In addition, they are facing increasing nutrient and sediment inputs as a consequence of urban growth and tourism. While the global effects of anthropogenic stressors to coral communities have been described, the local response and microscale variations remain unknown. Therefore, the present study evaluates three physiological markers during 2018 (total lipid content, symbiont density, and chlorophyll a concentration) in the main reef-building coral genera (Pocillopora, Porites, and Pavona) from two coral communities: one coastal site next to a luxury touristic development with high sedimentation rates and elevated nutrient inputs from golf courses, and one at an insular MPA 6 km distant from the coast and where human activities are regulated. At each coral sampling site, nitrite, nitrate, and phosphate concentrations as well as sedimentation rates were measured. The analyses of the physiological markers showed significant differences in the lipid content and symbiont density between sites, with corals at Isla Larga presenting higher lipid content but lower symbiont density, while pigment concentration only differed across months. When assessing differences among coral genera, Pocillopora colonies presented the highest lipid content, while Pavona showed more symbionts and Porites colonies the uppermost pigment concentrations, with significant differences among genera and across the studied months. Environmental characterization showed significant differences between sites in the nitrate concentration and sedimentation rates. Generalized nonlinear models evidence that lipid concentration is related to sedimentation rates and temperatures, symbiont density to nitrite and phosphate concentrations, and pigment concentrations to nitrate and phosphate concentrations as well as sedimentation rates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image Processing with ImageJ Biophotonics Int 11(7):36–42

    Google Scholar 

  2. Achituv Y, Ben-Zion M, Mizrahi L (1994) Carbohydrate, lipid, and protein composition of zooxanthellae and animal fractions of the coral Pocillopora damicornis exposed to ammonium enrichment. Pac Sci 48(03):224–233

    CAS  Google Scholar 

  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Press, Plymouth

    Google Scholar 

  4. Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    CAS  PubMed  Google Scholar 

  5. Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington DC

    Google Scholar 

  6. Cabral-Tena RA, Reyes-Bonilla H, Lluch-Cota S, Paz-García DA, Calderón-Aguilera LE, Norzagaray-López O, Balart EF (2013) Different calcification rates in males and females of the coral Porites panamensis in the Gulf of California. Mar Ecol Prog Ser 476:1–8

    Google Scholar 

  7. Carpenter KE, Abrar M, AbeyG ARB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciango J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    CAS  PubMed  Google Scholar 

  8. Carriquiry JD, Reyes-Bonilla H (1997) Community structure and geographic distribution of the coral reefs of Nayarit. Mexican Pacific. Cienc 23(2):227–248

    Google Scholar 

  9. Carriquiry JD, Cupul-Magaña AL, Rodríguez-Zaragoza F, Medina-Rosas P (2001) Coral bleaching and mortality in the Mexican Pacific during the 1997–98 El Niño and prediction from a remote sensing approach. B Mar Sci 69(1):237–249

    Google Scholar 

  10. Clarke KR, Gorley RN (2006) Primer6: usermanual/tutorial. Primer-E, Plymouth

    Google Scholar 

  11. CONAGUA (2016) Ley federal de derechos: disposiciones aplicables en materia de aguas nacionales 2016. México.

  12. Cortés J, Reyes-Bonilla H (2017) Human influences on Eastern Tropical Pacific coral communities and coral reefs. Glynn PW, Manzello DP, Enochs IC(eds) Coral reefs of the Eastern tropical pacific: persistence and loss in a dynamic environment. Springer, Berlin, pp 549–563

    Google Scholar 

  13. Cupul-Cortés M, Hernández-Ayón JM, Cupul-Magaña AL, Rodríguez-Troncoso AP (2018) Variabilidad del sistema de CO2en el Parque Nacional Islas Marietas (PNIM), Bahía de Banderas. Nayarit. Simposio Internacional del Carbono en México, Sonora, pp 235–242

    Google Scholar 

  14. Cupul-Magaña AL, Rodríguez-Troncoso AP (2017) Tourist carrying capacity at Islas Marietas National Park: an essential tool to protect the coral community. Appl Geogr 88:15–23

    Google Scholar 

  15. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    CAS  PubMed  Google Scholar 

  16. Fabricius KE (2011) Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. Dubinsky Z, Stambler N(eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 493–505

    Google Scholar 

  17. Fabricius KE, Death G (2001) Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303–309

    Google Scholar 

  18. Folch JLM, Sloane-Stanley GH (1957) Simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–506

    CAS  Google Scholar 

  19. Gil MA, Goldenberg SU, Bach ALT, Mills SC, Claudet J (2016) Interactive effects of three pervasive marine stressors in a post disturbance coral reef. Coral Reefs 35:1281–1293

    Google Scholar 

  20. Glynn PW (2017) History of Eastern Pacific coral reef research. Glynn PW, Manzello DP, Enochs IC(eds) Coral reefs of the Eastern Tropical Pacific: persistence and loss in a dynamic environment. Springer, Berlin, pp 1–37

    Google Scholar 

  21. Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23

    Google Scholar 

  22. Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models: a roughness penalty approach. Chapman & Hall/CRC Press, Boca Raton

    Google Scholar 

  23. Green RH, Lowe RJ, Buckley ML, Foster T, Gilmour JP (2019) Physical mechanisms influencing localized patterns of temperature variability and coral bleaching within a system of reef atolls. Coral Reefs 38(4):759–771

    Google Scholar 

  24. Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440(7088):1186–1189

    CAS  PubMed  Google Scholar 

  25. Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral Reefs: an ecosystem in transition. Springer, Berlin, pp 59–84

    Google Scholar 

  26. Hernández-Zulueta J, Rodríguez-Zaragoza FA, Araya R, Vargas-Ponce O, Rodríguez-Troncoso AP, Cupul-Magaña AL, Días-Pérez L, Ríos-Jara E, Ortiz M (2017) Multi-scale analysis of hermatypic coral assemblages at Mexican Central Pacific. Sci Mar 81(1):91–102

    Google Scholar 

  27. Hoegh-Guldberg O (2014) Coral reef sustainability through adaptation: glimmer of hope or persistent mirage? Curr Opin Environ Sustain 7:127–133

    Google Scholar 

  28. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin M, Gilmour JP, Graham NAJ, Harrison H, Hobbs JPA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371):80–83

    CAS  PubMed  Google Scholar 

  29. Humanes A, Ricardo GF, Willis BL, Fabricius KE, Negri AP (2017) Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis. Sci Rep 7:44101

    PubMed  PubMed Central  Google Scholar 

  30. Karydis M (2009) Eutrophication assessment of coastal waters based on indicators: a literature review. Glob NEST J 11(4):373–390

    Google Scholar 

  31. Kleypas JA, McManus JW, Menez LA (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39(1):146–159

    Google Scholar 

  32. Merchand-Rojas MA (2012) The inter-state development of Puerto Vallarta and Bahía de Banderas: México. Prob Des 43(168):147–173

    Google Scholar 

  33. Morgan KM, Perry CT, Johnson JA, Smithers SG (2017) Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Front Mar Sci 4:224

    Google Scholar 

  34. Nava H, Ramírez-Herrera MT (2012) Land use and impact on coral communities along the central Pacific coast of Mexico. Environ Earth Sci 65(2012):1095–1104

    Google Scholar 

  35. Parkhill JP, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J Phycol 37:517–529

    Google Scholar 

  36. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater -analysis. Pergamon Press, New York

    Google Scholar 

  37. Phillip E, Fabricius KE (2003) Photophysiological stress in scleractinian corals in response to short-term sedimentation. J Exps Mar Biol Ecol 287:57–78

    Google Scholar 

  38. Plata L, Filonov A (2007) Marea interna en la parte noroeste de la Bahía de Banderas México. Cienc Mar 33(2):197–215

    Google Scholar 

  39. Portela W, Beier E, Barton ED, Castro R, Godínez V, Palacios-Hernández E, Fiedler PC, Sánchez-Velazco L, Trasviña A (2016) Water masses and circulation in the tropical pacific off Central Mexico and surrounding areas. J Phys Oceanogr 46(10):3069–3081

    Google Scholar 

  40. Prouty NG, Cohen A, Yates KK, Storlazzi CD, Swarzenski PW, White D (2017) Vulnerability of coral reefs to bioerosion from land-based sources of pollution. J Geophys Res Oceans 122(12):9319–9331

    CAS  Google Scholar 

  41. Reaka-Kudla ML (1997) The global biodiversity of coral reefs: a comparison with rain forests. Reaka-Kudla ML, Wilson DE, Wilson EO(eds) Biodiversity II: understanding and protecting our biological resources. National Academy Press, Washington DC, pp 83–108

    Google Scholar 

  42. Rodríguez-Troncoso AP, Al Cupul-Magaña (2016) Effect of abnormal high temperature as during 2014–2015 on coral communities from the Central Mexican Pacific. Proc 13 Int Coral Reef Symp 1:291–292

    Google Scholar 

  43. Rodríguez-Troncoso AP, Carpizo-Ituarte E, Cupul-Magaña AL (2010) Differential response to cold and warm water conditions in Pocillopora colonies from the Central Mexican Pacific. J Exp Mar Bio Ecol 391(2010):57–64

    Google Scholar 

  44. Rodríguez-Troncoso AP, Carpizo-Ituarte E, Cupul-Magaña AL (2016) Physiological response to high temperature in the Tropical Eastern Pacific coral Pocillopora verrucosa. Mar Ecol 37(5):1168–1175

    Google Scholar 

  45. Rodríguez-Troncoso AP, Carpizo-Ituarte E, Pettay DT, WarnerME C-M (2014) The effects of abnormal decrease in temperature on the Eastern Pacific reef-building coral Pocillopora verrucosa. Mar Biol 161:131–139

    Google Scholar 

  46. Romero-Torres M, Acosta A, Palacio-Castro AM, Treml EA, Capata FA, Paz-García DA, Porter JW (2020) Coral reef resilience to thermal stress in the Eastern Tropical Pacific. Glob Chang Biol. https://doi.org/10.1111/GCB.15126

    Article  PubMed  Google Scholar 

  47. Rosset S, Wiedenmann J, Reed AJ, D’Angelo C (2017) Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar Pollut Bull 118:180–187

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rouzé H, Lecellier G, Langlade MJ, Planes S, Berteaux-Lecellier V (2015) Fringing reefs exposed to different levels of eutrophication and sedimentation can support similar benthic communities. Mar Pollut Bull 92(2015):212–221

    PubMed  Google Scholar 

  49. Santiago-Valentín JD, Colley SB, Glynn PW, Cupul-Magaña AL, López-Pérez RA, Rodríguez-Zaragoza FA, Benítez-Villalobos F, Bautista-Guerrero E, Zavala-Casas DA, Rodríguez-Troncoso AP (2018) Regional and species specific sexual reproductive patterns of three zooxanthellate scleractinian corals across the Eastern Tropical Pacific. Mar Ecol 39(2):e12497

    Google Scholar 

  50. Spalding M, Burke L, Wood SA, Ashpole J, Hutchinson J, zu Ermgassen P (2017) Mapping the global value and distribution of coral reef tourism. Mar Policy 82(2017):104–113

    Google Scholar 

  51. StatSoft, Inc. (2007). STATISTICA (data analysis software system), version 8.0. www.statsoft.com.

  52. Stimson J, Larned ST, Conklin E (2001) Effects of herbivory, nutrient levels, and introduced algae on the distribution and abundance of the invasive macroalga Dictyosphaeria cavernosa in Kaneohe Bay. Hawaii Coral Reefs 19:343–357

    Google Scholar 

  53. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries research board of Canada, Ottawa

    Google Scholar 

  54. Sully S, van Woesik R (2019) Turbid reefs moderate coral bleaching under climate-related temperature stress. Glob Change Biol 26(3):1367–1373

    Google Scholar 

  55. Todd PA, Ong X, Chou LM (2010) Impacts of pollution on marine life in Southeast Asia. Biodivers Conserv 19:1063–1082

    Google Scholar 

  56. Tortolero-Langarica JJA, Rodríguez-Troncoso AP, Cupul-Magaña AL, Carricart-Ganivet JP (2017) Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. Peer J 5:e3191

    PubMed  Google Scholar 

  57. Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  58. Veron J, Stafford-Smith M, DeVantier L, Turak E (2015) Overview of distribution patterns of zooxanthellate Scleractinia. Front Mar Sci 1:81

    Google Scholar 

  59. Ward S (1995) The effect of damage on the growth, reproduction and storage of lipids in the scleractinian coral Pocillopora damicornis (Linnaeus). J Exp Mar Biol Ecol 187(1995):193–206

    CAS  Google Scholar 

  60. Wear SL, Thurber RV (2015) Sewage pollution: mitigation is key for coral reef stewardship. Ann N Y Acad Sci 1355(2015):15–30

    PubMed  PubMed Central  Google Scholar 

  61. Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret FE, Postle AD, Achterberg EP (2013) Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Chang 3(2):160–164

    CAS  Google Scholar 

  62. Wooldridge SA (2014) Assessing coral health and resilience in a warming ocean: why looks can be deceptive. Bio Essays 36:1041–1049

    Google Scholar 

  63. Zar JH (2010) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

VMC received a Ph.D. scholarship from the Centro Nacional de Ciencia y Tecnología while conducting the study and writing the manuscript (ID. 332939). The present research was supported by two National Geographic Society Grants (NGS-55349R-19 to APRT and EC-51496C-18 to VMC), and by the project “Restauración de Arrecifes Coralinos en el PN Islas Marietas” (PROCER/CCER/DROPC/09/2016) to ALCM. Coral sampling was performed under permit PPF/DGOPA-061/18. The authors thank the organization “Protección y Restauración de Islas y Zonas Naturales” (PROZONA A.C.) for their assistance in field operations. Also, the authors kindly thank Diana Morales de Anda and Vladimir Pérez de Silva for their assistance and advice with the statistical analyses, and the comments of Jared Johnson and two anonymous reviewers that greatly improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alma Paola Rodríguez-Troncoso.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor John A. Burt

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Castillo, V., Rodríguez-Troncoso, A.P., Santiago-Valentín, J.D. et al. The influence of urban pressures on coral physiology on marginal coral reefs of the Mexican Pacific. Coral Reefs 39, 625–637 (2020). https://doi.org/10.1007/s00338-020-01957-z

Download citation

Keywords

  • Scleractinia
  • Eutrophication
  • Sedimentation
  • Coral physiology
  • Eastern tropical pacific