Skip to main content
Log in

Identification of newly settled Caribbean coral recruits by ITS-targeted single-step nested multiplex PCR

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

As coral cover has declined throughout the Caribbean, interest in determining the potential for reef recovery via natural recruitment processes has increased. Studies investigating recruitment have been hampered by the difficulty of identifying early stage corals that often lack distinguishing morphological characters. In this study, the utility of targeting the noncoding ribosomal internal transcribed spacer (ITS) regions with a single-step nested multiplex (SSNM) PCR assay to identify common Caribbean coral species was investigated. To design this assay, a database of ITS sequences for 17 common Caribbean coral species was developed. Phylogenies based on the ITS region were generally consistent with current published coral taxonomy and indicated that the ITS regions provided sufficient variability to be useful for distinguishing corals to at least the genus level. Ultimately, we developed ITS-targeted single-step nested multiplex PCR assays capable of differentiating six corals to the species level, two to the genus level, and a pair of coral species that were recently separated at the genus level. This assay was used to classify coral recruits previously identified based on morphological characters. Agreement between these two approaches was low and highlighted the ability of the SSNM-PCR assay to increase the certainty and accuracy of coral recruit identifications. The coral SSNM assay shows promise as an effective method of identifying early stage corals to the genus or species level, and as a valuable tool in studies investigating reef recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Babcock RC, Baird AH, Piromvaragorn S, Thomson DP, Willis BL (2003) Identification of scleractinian coral recruits from Indo-Pacific Reefs. Zool Stud 42:211–226

    Google Scholar 

  • Bak RPM, Engel MS (1979) Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parent coral community. Mar Biol 54:341–352

    Article  Google Scholar 

  • Booton GC, Kaufman L, Chandler M, Oguto-Ohwayo R, Duan W, Fuerst PA (1999) Evolution of the ribosomal RNA internal transcribed spacer one (ITS-1) in cichlid fishes of the Lake Victoria region. Mol Phylogenetics Evol 11:273–282

    Article  CAS  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529

    Article  Google Scholar 

  • Budd AF, Stemann TA, Johnson KG (1994) Stratigraphic distribution of genera and species of Neogene to Recent Caribbean reef corals. J Paleontol 68:951–977

    Article  Google Scholar 

  • Budd AF, Stolarski J (2009) Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae. Acta Zool 90:142–165

    Article  Google Scholar 

  • Budd AF, Stolarski J (2011) Corallite wall and septal microstructure in scleractinian reef corals: comparison of molecular clades with the family Faviidae. J Morphol 272:66–88

    Article  PubMed  Google Scholar 

  • Carlon DB (2001) Depth-related patterns of coral recruitment and cryptic suspension-feeding invertebrates on Guan Island, British Virgin Islands. Bull Mar Sci 68:525–541

    Google Scholar 

  • Chen CA, Chanf C, Wei NV, Chen C, Lein Y, Lin H, Dai C, Wallace CC (2004) Secondary structure and phylogenetic utility of the ribosomal internal transcribe spacer 2 (ITS2) in scleractinian corals. Zool Stud 43:759–771

    CAS  Google Scholar 

  • Chiappone M, Sullivan KM (1996) Distribution, abundance, and species composition of juvenile scleractinian corals in the Florida reef tract. Bull Mar Sci 58:555–569

    Google Scholar 

  • de Bakker DM, Meesters EH, van Bleijswijk JD, Luttikuizen PC, Breeuwer HJ, Becking LE (2016) Population genetic structure, abundance, and health status of two dominant benthic species in the Saba Bank National Park, Caribbean Netherland: Montastraea cavernosa and Xestospongia muta. PLoS ONE 11:E0155969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donahue S, Acosta A, Akins L, Ault J, Bohnsack J, Boyer J, Callahan M, Causey B, Cox C, Delaney J, Delgado G, Edwards K, Garrett G, Keller B, Kellison GT, Leeworthy VR, MachLaughlin L, McClenachan L, Miller MW, Miller SL, Ritchie K, Rohmann S, Santavy D, Pattengill-Semmens C, Sniffen B, Werndli S, Williams DE (2008) The state of coral reef ecosystems of the Florida Keys pp 161-87. In: Waddell, J.E., A.M. Clarke (eds) The state of coral reef ecosystems of the United States and Pacific Freely Associated States: 2008. NOAA Technical Memorandum NOS NCCOS 73. NOAA/NCCOS Center for Coastal Monitoring Assessment’s Biogeography Team. Silver Spring, MD, pp 569

  • Edgar RC (2004a) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004b) MUSCLE: multiple sequence alignment with reduced time and space complexity. BMC Bioinform 5:113

    Article  CAS  Google Scholar 

  • Edmunds PJ (2010) Population biology of Porites astreoides and Diploria strigosa on a shallow Caribbean reef. Mar Ecol Prog Ser 418:87–104

    Article  Google Scholar 

  • Forsman ZH, Hunter CL, Fox GE, Wellington GM (2006) Is the ITS region the solution to the ‘species problem’ in corals? Intragenomic variation and alignment permutation in Porites, Siderastrea and outgroup taxa. Proceedings of 10th International Coral Reef Symposium 14-23

  • Frischer ME, Lee RF, Price AR, Walters TL, Bassette MA, Verdiyev R, Torris MC, Bulski K, Geer PJ, Powell SA, Walker AN, Landers SC (2017) Causes, diagnostics, and distribution of an ongoing penaeid shrimp black gill epidemic in the U.S. South Atlantic Bight. J Shellfish Res 36:487–500

    Article  Google Scholar 

  • Frischer ME, Sanchez CA, Walters TL, Thompson ME, Frazier LM, Paffenhöfer GA (2014) Reliability of qPCR for quantitative gut content estimation in the circumglobally abundant pelagic tunicate Dolioletta gegenbauri (Tunicata, Thaliacea). Food Webs 1:18–24

    Article  Google Scholar 

  • Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gleason D, Brazeau D, Munfus D (2001) Can self-fertilizing coral species be used to enhance restoration of Caribbean reefs? Bull Mar Sci 69:933–943

    Google Scholar 

  • Green DH, Edmunds PJ (2011) Spatio-temporal variability of coral recruitment on shallow reefs in St. John, US Virgin Islands. J Exp Mar Bio Ecol 397:220–229

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hodgson G (1985) Abundance and distribution of planktonic larvae in Kaneohe Bay, Oahu, Hawaii. Mar Ecol Prog Ser 26:61–75

    Article  Google Scholar 

  • Hoeksema BW, Roos PJ, Cadée GC (2012) Trans-Atlantic rafting by the brooding reef coral Favia fragum on man-made flotsam. Mar Ecol Prog Ser 445:209–218

    Article  Google Scholar 

  • Hughes TP (1990) Recruitment limitation, mortality, and population regulation in open systems: a case study. Ecology 7:12–20

    Article  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberf R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Humanes A, Bastidas C (2015) In situ settlement rates and early survivorship of hard corals: a good year for a Caribbean reef. Mar Ecol Prog Ser 539:139–151

    Article  Google Scholar 

  • Hsu C, de Palmas S, Kuo C, Denis V, Chen CA (2014) Identification of Scleractinian Coral Recruits Using Fluorescent Censusing and DNA Barcoding Techniques. PLoS ONE 9:e107366. https://doi.org/10.1371/journal.pone.0107366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, van Oppen MJH, Williams BL (2009) Larval retention and onnectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325

    Article  Google Scholar 

  • Kemp DW, Colella MA, Bartlett LA, Ruzicka RR, Porter JW, Fitt WK (2016) Life after cold death: reef coral and coral reef responses to the 2010 cold water anomaly in the Florida Keys. Ecosphere 7:1–17

    Article  Google Scholar 

  • Kim S, Crawford DJ, Francisco-Ortega J, Santos-Guerra A (1996) A common origin for wood Sonchus and five related genera in the Macaronesian islands: molecular evidence for extensive radiation. Proc Natl Acad Sci 93:7743–7748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Evolutionary Genetics Analysis 33:1870–1874

    CAS  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 87:866–880

    Article  Google Scholar 

  • Larsen JB, Frischer ME, Rasmussen LJ, Hansen BW (2005) Single-step nested multiplex PCR to differentiate between various bivalve larvae. Mar Biol 146:1119–1129

    Article  CAS  Google Scholar 

  • Larsen JB, Frischer ME, Ockelmann KW, Rasmussen LJ, Hansen BW (2007) Temporal occurrence of planktotrophic bivalve larvae identified morphologically and by single step nested multiplex PCR. J Plankton Res 29:423–436

    Article  CAS  Google Scholar 

  • Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T (2009) Rapid and accurate large scale coestimation of sequence alignments and phylogenetic trees. Science 324:1561–1564

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Warnow TJ, Holder MT, Nelesen S, Yu J, Stamatakis A, Linder CR (2012) SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignment and phylogenetic trees. Syst Biol 61:90–106

    Article  PubMed  Google Scholar 

  • Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20:2471–2472

    Article  CAS  PubMed  Google Scholar 

  • Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) Using ITS and COI Sequences. Mar Biotechnol 1:89–97

    Article  CAS  Google Scholar 

  • Mercado-Molina AE, Ruiz-Diaz CP, Sabat AM (2015) Demographics and dynamics of two restored populations of the threatened reef-building coral Acropora cervicornis. J Nat Conserv 24:17–23

    Article  Google Scholar 

  • Miller MW, Barimo J (2001) Assessment of juvenile coral populations at two reef restoration sties in the Florida Keys National Marine Sanctuary: indicators of success? Bull Mar Sci 69:395–405

    Google Scholar 

  • Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26:487–499

    Article  Google Scholar 

  • Odorico DM, Miller DJ (1997) Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): patterns of variation consistent with reticulate evolution. Mol Biol Evol 14:465–473

    Article  CAS  PubMed  Google Scholar 

  • Powers TO, Todd TC, Burnell AM, Murray PCB, Fleming CC, Szalanski AL, Adams BA, Harris TS (1997) The rDNA internal transcribed spacer region as a taxonomic marker for nematodes. J Nematol 29:441–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosser NL, Thomas L, Stankowski S, Richards ZT, Kennington WJ, Johnson MS (2017) Phylogenomics provides new insight into evolutionary relationships and genealogical discordance in the reef-building coral genus Acropora. Proc R Soc B 284:20162182

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruzicka RR, Colella MA, Porter JW, Morrison JM, Kidney JA, Brinkhuis V, Lunz KS, Macaulay KA, Bartlett LA, Meyers MK, Colee J (2013) Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar Ecol Prog Ser 489:125–141

    Article  Google Scholar 

  • Shearer TK, Coffroth MA (2006) Genetic identification of Caribbean scleractinian coral recruits at the Flower Garden Banks and the Florida Keys. Mar Ecol Prog Ser 306:133–142

    Article  CAS  Google Scholar 

  • Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics 26:1569–1571

    Article  CAS  PubMed  Google Scholar 

  • Suzuki G, Hayashibara T, Shirayama Y, Fukami H (2008) Evidence of species-specific habitat selectivity of Acropora corals based on identification of new recruits by two molecular markers. Mar Ecol Prog Ser 355:149–159

    Article  CAS  Google Scholar 

  • Szmant AM, Weil E, Miller MW, Colón DE (1997) Hybridization within the species complex of the scleractinian coral Montastraea annularis. Mar Biol 129:561–572

    Article  Google Scholar 

  • Untergasser A, Nijeen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  • van Oppen MJH, Willis BL, van Vugt HWJA, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Vollmer SV, Palumbi SR (2004) Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Mol Ecol 13:2763–2772

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Willis BL, van Oppen MJH, Miller DJ, Vollmer SV, Ayre DJ (2006) The role of hybridization in the evolution of reef corals. Annu Rev Ecol Evol Syst 37:489–517

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Florida Fish and Wildlife Conservation Commission Coral and Collections Teams, including Leah Harper, Mike Colella, Lindsay Huebner, Vanessa Brinkhuis, Tiffany Boisvert, Ari Halperin, Ananda Ellis, Katy Cummings, Laura Wiggins, Paul Larson, Krista Austin, and Miguel Montaluo for assistance in the field. We would also like to thank the many laboratories and investigators who provided DNA samples: Andrew Baker (University of Miami), Mary Alice Coffroth (State University of New York at Buffalo), Daniel Brazeau (University of New England), and Stephanie Schopmeyer (University of Miami). This project was completed through a grant provided by the National Oceanic and Atmospheric Administration’s Coral Reef Conservation Program (Federal Award #MOA-2010-026/8081) via a sub-award with the Florida Fish and Wildlife Conservation Commission (FWC Agreement #14208). This study was supported in part by the US National Science Foundation Awards OCE 082599 and OCE 1459293 to MEF. This project was also funded in part by the PADI Foundation to EDO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elijah D. O’Cain.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Dr. Anastazia Banaszak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (FAS 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Cain, E.D., Frischer, M.E., Harrison, J.S. et al. Identification of newly settled Caribbean coral recruits by ITS-targeted single-step nested multiplex PCR. Coral Reefs 38, 79–92 (2019). https://doi.org/10.1007/s00338-018-01763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-01763-8

Keywords

Navigation