Skip to main content

Advertisement

Log in

Elevated Symbiodiniaceae richness at Atauro Island (Timor-Leste): a highly biodiverse reef system

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

To persist in oligotrophic waters, reef-building corals rely on nutritional interactions with symbiotic dinoflagellates of the family Symbiodiniaceae, but the true diversity of this family remains poorly characterised. In this paper, we assess Symbiodiniaceae richness at Atauro Island (Timor-Leste) as well as on reefs of the neighbouring Timor mainland, using direct sequencing of three gene regions: cob gene, mitochondrion; ITS2 region, nucleus; and psbAncr region, chloroplast; in addition to a highly multiplexed application of next-generation sequencing. These geographic sites are among the most biodiverse in the world, but have never had their symbiont communities studied. Despite their proximity, our results reveal symbiont richness 1.25 times higher at Atauro Island than the Timor mainland, a result evident in dominant sequences. In contrast, Timor had a significantly richer background sequence diversity. Although sampling was restricted to shallow sites only, symbiont richness at Atauro Island was also higher than comparative reefscapes globally, after standardising for number of taxa sampled. While Atauro and Timor have related symbiont populations, with the same novel types recorded at both sites, there were also clear differences in symbiont composition between the two geographic regions, with Timor displaying a consortium more characteristic of stressed reef environments (proportionally hosting twice as many Durusdinium sequences, formerly clade D, as Atauro). These results reveal a symbiont richness that matches the high biodiversity of these reefs, but also potentially negative effects of proximal human populations on Symbiodiniaceae, even when previous studies have shown corals to be largely unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol 23:4418–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atmadipoera A, Molcard R, Madec G, Wijffels S, Sprintall J, Koch-Larrouy A et al (2009) Characteristics and variability of the Indonesian throughflow water at the outflow straits. Deep Sea Res Part 1 Oceanogr Res Pap 56:1942–1954

    Article  Google Scholar 

  • Ayling AM, Ayling AL, Edyvane KS, Penny S, de Carvalho N, Fernandes A, Amaral AL (2009) Preliminary biological resource survey of fringing reefs in the proposed Nino Konis Santana Marine Park, Timor Leste. Report to the Northern Territory Department of Natural Resources, Environment & the Arts

  • Baird AH, Cumbo VR, Leggat W, Rodriguez-Lanetty M (2007) Fidelity and flexibility in coral-algal symbioses. Mar Ecol Prog Ser 347:307–309

    Article  Google Scholar 

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  PubMed  Google Scholar 

  • Baums IB, Devlin-Durante MK, LaJeunesse TC (2014) New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 23:4203–4215

    Article  PubMed  Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326

    Article  Google Scholar 

  • Byler KA, Carmi-Veal M, Fine M, Goulet TL (2013) Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PloS One 8:e59596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauka LJ (2012) Diversity of symbiotic algae in the genus Symbiodinium in scleractinian corals of Tanzania. West Indian Ocean J Mar Sci 11:67–76

    Google Scholar 

  • Cinner JE (2014) Coral reef livelihoods. Curr Opin Environ Sustain 7:65–71

    Article  Google Scholar 

  • Conservation International (2016) www.conservation.org/NewsRoom/pressreleases/Pages/Biodiversity-survey-reveals-reefs-in-Timor-Leste-s-Atauro-Island-hold-the-worlds-highest-reef-fish-species-average-.aspx

  • Cunning R, Gillette P, Capo T, Galvez K, Baker AC (2015a) Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34:155–160

    Article  Google Scholar 

  • Cunning R, Yost DM, Guarinello ML, Putnam HM, Gates RD (2015b) Variability of Symbiodinium communities in waters, sediments, and corals of thermally distinct reef pools in American Samoa. PLoS One 10:e0145099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo C, Hume BC, Burt J, Smith EG, Achterberg EP, Wiedenmann J (2015) Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. ISME J 9:2551–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabina NS, Putnam HM, Franklin EC, Stat M, Gates RD (2012) Transmission mode predicts specificity and interaction patterns in coral-Symbiodinium networks. PLoS One 7:e44970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD (2012) GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium–host symbioses. Mol Ecol Resour 12:369–373

    Article  PubMed  Google Scholar 

  • Geneious version 8.0.5 created by Biomatters. Available from http://www.geneious.com

  • Glynn PW, Maté JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bulletin of Marine Science 69:79–109

    Google Scholar 

  • Grupstra CG, Coma R, Ribes M, Leydet KP, Parkinson JE, McDonald K et al (2017) Evidence for coral range expansion accompanied by reduced diversity of Symbiodinium genotypes. Coral Reefs 36:981–985

    Article  Google Scholar 

  • Harii S, Kayanne H, Takigawa H, Hayashibara T, Yamamoto M (2002) Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar Biol 141:39–46

    Article  Google Scholar 

  • Howells EJ, van Oppen MJH, Willis BL (2009) High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium. Coral Reefs 28:215–225

    Article  Google Scholar 

  • Howells EJ, Willis BL, Bay LK, van Oppen MJH (2016) Microsatellite allele sizes alone are insufficient to delineate species boundaries in Symbiodinium. Mol Ecol 25:2719–2723

    Article  CAS  PubMed  Google Scholar 

  • Hume BC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the internal transcribed spacer region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One 6:e29013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 48:1380–1391

    Article  PubMed  Google Scholar 

  • LaJeunesse TC, Loh WK, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004a) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603

    Google Scholar 

  • LaJeunesse TC, Bonilla HR, Warner ME, Wills M, Schmidt GW, Fitt WK (2008) Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol Oceanogr 53:719–727

    Article  Google Scholar 

  • LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53:305–319

    Article  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW et al (2004b) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Article  Google Scholar 

  • LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO et al (2010) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800

    Article  Google Scholar 

  • Lesser MP, Stat M, Gates RD (2013) The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32:603–611

    Article  Google Scholar 

  • McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012) Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Prog Ser 462:1–7

    Article  Google Scholar 

  • Moore RB, Ferguson KM, Loh WK, Hoegh-Guldberg O, Carter DA (2003) Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. Int J Syst Evol Microbiol 53:1725–1734

    Article  CAS  PubMed  Google Scholar 

  • Noda H, Parkinson JE, Yang SY, Reimer JD (2017) A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-jima Island. Japan. PeerJ 5:e3740

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL et al (2017) vegan: Community Ecology Package. R package version 2.4-5

  • Oliver TA, Palumbi SR (2011) Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30:241–250

    Article  Google Scholar 

  • Parkinson JE, Baums IB (2014) The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral–algal associations. Front Microbiol 5:445

    Article  PubMed  PubMed Central  Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078

    Article  Google Scholar 

  • Pochon X, Putnam HM, Burki F, Gates RD (2012) Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS One 7:e29816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam HM, Stat M, Pochon X, Gates RD (2012) Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc B 279:4352–4361

    Article  PubMed  PubMed Central  Google Scholar 

  • Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, Bay LK (2014) Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium biosphere in reef-building corals. PloS One 9:e94297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Richards ZT, Yasuda N, Kikuchi T, Foster T, Mitsuyuki C, Stat M, Suyama Y, Wilson NG (2018) Integrated evidence reveals a new species in the ancient blue coral genus Heliopora (Octocorallia). Sci Rep 8:15875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouzé H, Lecellier G, Saulnier D, Berteaux-Lecellier V (2016) Symbiodinium clades A and D differentially predispose Acropora cytherea to disease and Vibrio spp. colonization. Ecol Evol 6:560–572

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouzé H, Lecellier GJ, Saulnier D, Planes S, Gueguen Y, Wirshing HH, Berteaux-Lecellier V (2017) An updated assessment of Symbiodinium spp. that associate with common scleractinian corals from Moorea (French Polynesia) reveals high diversity among background symbionts and a novel finding of clade B. PeerJ 5:e2856

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowan R (2004) Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  PubMed  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci 92:2850–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    Article  CAS  PubMed  Google Scholar 

  • Santos SR (2014) Expanding the population genetic perspective of cnidarian-Symbiodinium symbiosis. Mol Ecol 23:4185–4187

    Article  PubMed  Google Scholar 

  • Silove D, Liddell B, Rees S, Chey T, Nickerson A, Tam N et al (2014) Effects of recurrent violence on post-traumatic stress disorder and severe distress in conflict-affected Timor-Leste: a 6-year longitudinal study. Lancet Glob Health 2:e293–e300

    Article  PubMed  Google Scholar 

  • Smith EG, Ketchum RN, Burt JA (2017) Host specificity of Symbiodinium variants revealed by an ITS2 metahaplotype approach. ISME J 11:1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—Symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Syst 8:23–43

    Article  Google Scholar 

  • Stat M, Yost DM, Gates RD (2015) Geographic structure and host specificity shape the community composition of symbiotic dinoflagellates in corals from the Northwestern Hawaiian Islands. Coral Reefs 34:1075–1086

    Article  Google Scholar 

  • Stat M, Pochon X, Cowie RO, Gates RD (2009) Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar Ecol Prog Ser 386:83–96

    Article  CAS  Google Scholar 

  • Stat M, Pochon X, Franklin EC, Bruno JF, Casey KS, Selig ER, Gates RD (2013) The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress. Ecol Evol 3:1317–1329

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas L, Kendrick GA, Kennington WJ, Richards ZT, Stat M (2014) Exploring Symbiodinium diversity and host specificity in Acropora corals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Mol Ecol 23:3113–3126

    Article  CAS  PubMed  Google Scholar 

  • Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2014) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367

    Article  CAS  PubMed  Google Scholar 

  • Tonk L, Sampayo EM, Weeks S, Magno-Canto M, Hoegh-Guldberg O (2013) Host-specific interactions with environmental factors shape the distribution of Symbiodinium across the Great Barrier Reef. PLoS One 8:e68533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turak E, DeVantier L (2013) Reef-building corals in Timor-Leste. A rapid marine biological assessment of Timor-Leste. Timor Leste, Dili: Coral Triangle Support Partnership, Conservation International

  • Veron JEN, Stafford-Smith M (2000) Corals of the world. Volumes 1-3. Australian Institute of Marine Science, Townsville, Australia. 1382 pp

  • Wham DC, Ning G, LaJeunesse TC (2017) Symbiodinium glynnii sp. nov., a species of stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the Pacific Ocean. Phycologia 56:396–409

    Article  CAS  Google Scholar 

  • Wilkinson SP, Davy SK, Bunce M, Stat M (2018) Taxonomic identification of environmental DNA with informatic sequence classification trees. PeerJ Preprints 6:e26812v1. https://doi.org/10.7287/peerj.preprints.26812v1

    Article  Google Scholar 

  • Zhang H, Bhattacharya D, Lin S (2005) Phylogeny of dinoflagellates based on mitochondrial cytochrome B and nuclear small subunit rDNA sequence comparisons. J Phycol 41:411–420

    Article  CAS  Google Scholar 

  • Ziegler M, Arif C, Burt JA, Dobretsov S, Roder C, LaJeunesse TC, Voolstra CR (2017) Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J Biogeogr 44:674–686

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a William Georgetti Scholarship awarded to JIB, and a Rutherford Postdoctoral Fellowship awarded to SPW. All biological samples were collected with the permission of the government of Timor-Leste (Ministerio da Agricultura e Pescas, permit number LNC-PC0012.VI.16). The fieldwork component of this research was conducted with the assistance of Barry Hinton, Ricardo Ximenes Marquez, Kevin Austen and Alice Wilkinson, and the laboratory component with the assistance of Grace Newson and Charlotte Völkel. We are very grateful for three anonymous reviewers, whose comments greatly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JIB, SPW and SKD conceived the study. JIB and SPW carried out fieldwork. JIB performed laboratory analysis. JIB and SPW analysed and interpreted the data. JIB, SPW and SKD wrote the paper.

Corresponding author

Correspondence to Simon K. Davy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brian, J.I., Davy, S.K. & Wilkinson, S.P. Elevated Symbiodiniaceae richness at Atauro Island (Timor-Leste): a highly biodiverse reef system. Coral Reefs 38, 123–136 (2019). https://doi.org/10.1007/s00338-018-01762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-01762-9

Keywords

Navigation