Skip to main content
Log in

Differential protein abundance during the first month of regeneration of the Caribbean star coral Montastraea cavernosa

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

It is critical to determine the methods by which coral colonies regenerate tissue lost to physical injury as they provide the physical structure of coral reef systems. To explore regeneration, circular lesions (12 mm diameter × 3 mm depth) were created in the fall of 2014 on 124 Montastraea cavernosa colonies located in the coastal waters of Grenada and Carriacou (10–12 m depth). Coral regeneration was documented at weekly intervals for 28 days. Repeated measures ANOVA on estimated weekly coral regeneration rates showed that island (p = 0.024) and colony colour (p = 0.024) were the only factors significantly affecting lesion regeneration. Mean rate of lesion closure during the first 28 days was approximately 2.8 mm2 d−1. Four identical circular lesions were created on 30 M. cavernosa colonies (Carriacou, 10–12 m depth) in the fall of 2015. One representative lesion created on each coral colony was re-sampled at each of 14, 21, and 32 or 33 days following injury, and coral tissue was flash-frozen. Tissues from 10 normally pigmented brown colonies were selected for proteomic analysis using tandem mass tags. The initial polyp sample, the day 14, and the final samples were used to quantify the difference in protein abundance as the lesions healed. In the tissue samples 6419 peptides were reliably identified, which corresponded to 906 unique proteins. During the first month of regeneration, 111 proteins were differentially abundant (p < 0.05) on at least one timepoint and of these, 11 were associated with regeneration. An additional 14 proteins were also identified that were differentially abundant (p < 0.05) and were associated with inflammation or antioxidant activity. This work demonstrates, for the first time, the differential abundance of proteins associated with regeneration in a scleractinian coral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–41

    Google Scholar 

  • Alberts B (ed) (2002) Molecular biology of the cell, 4th edn. Garland Science, New York, NY

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderson R, Morrall C, Nimrod S, Balza R, Berg C, Jossart J (2012) Benthic and fish population monitoring associated with a marine protected area in the nearshore waters of Grenada, Eastern Caribbean. Int J Trop Biol 60:71–87

    Google Scholar 

  • Anderson R, Morrall C, Nimrod S, Balza R, Berg C, Jossart J (2014) Marine Protected Area monitoring in the nearshore waters of Grenada, Eastern Caribbean: benthic cover and fish populations. Rev Biol Trop 62:71–87

    Article  Google Scholar 

  • Andrews SC (2010) The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim Biophys Acta 1800:691–705

    Article  CAS  PubMed  Google Scholar 

  • Aurora AB, Olson EN (2015) Immune modulation of stem cells and regeneration. Cell Stem Cell 15:14–25

    Article  CAS  Google Scholar 

  • Bak RPM, Meesters EH (1998) Coral population structure: The hidden information of colony size-frequency distributions. Mar Ecol Prog Ser 162:301–306

    Article  Google Scholar 

  • Bak RPM, Steward-Van Es Y (1980) Regeneration of superficial damage in the Scleractinian corals Agaricia agaricites F. Purpurea and Porites astreoides. Bull Mar Sci 30:883–887

    Google Scholar 

  • Bak RPM, Brouns JJWM, Heys FML (1977) Regeneration and aspects of spatial competition in the scleractinian corals Agaricia agaricites and Montastrea annularis. In: Proceedings of 3rd international coral reef Symposium Miami, pp 143–148

  • Baldauf SL, Palmer JD, Doolittle WF (1996) The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci USA 93:7749–7754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barneah O, Benayahu Y, Weis VM (2006) Comparative proteomics of symbiotic and aposymbiotic juvenile soft corals. Mar Biotechnol 8:11–16

    Article  CAS  Google Scholar 

  • Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309

    Article  CAS  Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129

    Article  Google Scholar 

  • Bryer SC, Fantuzzi G, Van Rooijen N, Koh TJ (2008) Urokinase-type plasminogen activator plays essential roles in macrophage chemotaxis and skeletal muscle regeneration. J Immunol 180:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Burton PM, Finnerty JR (2009) Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev Genes Evol 219:79–87

    Article  PubMed  Google Scholar 

  • Chang BY, Chiang M, Cartwright CA (2001) The interaction of Src and RACK1 is enhanced by activation of protein kinase C and tyrosine phosphorylation of RACK1. J Biol Chem 276:20346–20356

    Article  CAS  PubMed  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Arch Biochem Biophys 401:145–154

    Google Scholar 

  • Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou CY, Chen IP, Chen C, Wu HJL, Wei NV, Wallace CC, Chen CA (2008) Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral exon/intron organization of the eumetazoan CaM gene. J Mol Evol 66:317–324

    Article  CAS  PubMed  Google Scholar 

  • Chow AM, Beraud E, Tang DWF, Ferrier-Pagès C, Brown IR (2012) Hsp60 protein pattern in coral is altered by environmental changes in light and temperature. Comp Biochem Physiol 161:349–353

    Article  CAS  Google Scholar 

  • Closek CJ, Sunagawa S, DeSalvo MK, Piceno YM, DeSantis TZ, Brodie EL, Weber MX, Voolstra CR, Andersen GL, Medina M (2014) Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata. ISME J 8:2411–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and protome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Croquer A, Villamizar E, Noriega N (2002) Environmental factors affecting tissue regeneration of the reef-building coral Montastraea annularis (Faviidae) at Los Roques National Park, Venezuela. Revi Biol Trop 3:1055–1065

    Google Scholar 

  • Császár NBM, Seneca FO, Van Oppen MJH (2009) Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar Ecol Prog Ser 392:93–102

    Article  CAS  Google Scholar 

  • D’Angelo C, Smith EG, Oswald F, Burt J, Tchernov D, Wiedenmann J (2012) Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 31:1045–1056

    Article  Google Scholar 

  • Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  CAS  PubMed  Google Scholar 

  • Deininger MH, Meyermann R, Schluesener HJ (2002) The allograft inflammatory factor-1 family of proteins. FEBS Lett 514:115–121

    Article  CAS  PubMed  Google Scholar 

  • Di Natale A (2017) Apolipoprotein domain containing proteins and innate immunity in rainbow trout and walleye. MSc thesis, University of Guelph

  • Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar Biotechnol 2:533–544

    Article  CAS  Google Scholar 

  • Downs CA, Fauth JE, Robinson CE, Curry R, Lanzendorf B, Halas JC, Halas J, Woodley CM (2005) Cellular diagnostics and coral health: Declining coral health in the Florida Keys. 51:558–569

  • Drake J, Mass T, Haramaty L, Zelzion E, Bjattacharya D, Falkowski P (2013) Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc Natl Acad Sci 110:3788–3793

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisher EM, Fauth JE, Hallock P, Woodley CM (2007) Lesion regeneration rates in reef-building corals Montastraea spp. as indicators of colony condition. Mar Ecol Prog Ser 339:61–71

    Article  Google Scholar 

  • Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J Exp Mar Bio Ecol 373:102–110

    Article  Google Scholar 

  • Foster NL, Baums IB, Mumby PJ (2007) Sexual vs. asexual reproduction in an ecosystem engineer: The massive coral Montastraea annularis. J Anim Ecol 76:384–391

    Article  PubMed  Google Scholar 

  • Fuess LE, Pinzón JH, Weil E, Mydlarz LD (2016) Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals. Dev Comp Immunol 62:17–28

    Article  CAS  PubMed  Google Scholar 

  • Galloway SB, Work TM, Bochsler VS, Harley RA, Kramarsky-Winters E, McLaughlin SM, Meteyer CU, Morado JF, Nicholson JH, Parnell PG, Peters EC, Reynolds TL, Rotstein DS, Sileo L, and Woodley CM (2007) Coral disease and health workshop: Coral histopathology II. NOAA Technical Memorandum NOS NCCOS 56 and NOAA Technical Memorandum CRCP 4. National Oceanic and Atmospheric Administration, Silver Spring, MD. 84p

  • Goffredo S, Vergni P, Reggi M, Caroselli E, Sparla F, Levy O, Goffredo S, Vergni P, Reggi M, Caroselli E, Sparla F, Levy O, Falini G (2011) The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation. PLoS One 6:e22338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg WM (1974) Evidence of a sclerotized collagen from the skeleton of a gorgonian coral. Comp Biochem Physiol - Part B Biochem 49:525–526

    Article  CAS  Google Scholar 

  • Goss RJ (1992) The evolution of regeneration: Adaptive or inherent? J Theor Biol 159:241–260

    Article  CAS  PubMed  Google Scholar 

  • Graham JE, van Woesik R (2013) The effects of partial mortality on the fecundity of three common Caribbean corals. Mar Biol 160:2561–2565

    Article  Google Scholar 

  • Hall VR (1997) Interspecific differences in the regeneration of artificial injuries on scleractinian corals. J Exp Mar Bio Ecol 212:9–23

    Article  Google Scholar 

  • Hayward DC, Hetherington S, Behm CA, Grasso LC, Forêt S, Miller DJ, Ball EE (2011) Differential gene expression at coral settlement and metamorphosis - A subtractive hybridization study. PLoS One 6:e26411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helman Y, Natale F, Sherrell RM, LaVigne M, Starovoytov V, Gorbunov MY, Falkowski PG (2008) Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc Natl Acad Sci 105:54–58

    Article  PubMed  Google Scholar 

  • Henry LA, Hart M (2005) Regeneration from injury and resource allocation in sponges and corals - A review. Int Rev Hydrobiol 90:125–158

    Article  Google Scholar 

  • Jatkar A (2008) Mucus layer properties and dynamics in reef corals. Ph.D thesis, Newcastle University

  • Jatkar AA, Brown BE, Bythell JC, Guppy R, Morris NJ (2010) Coral Mucus: The properties of its constituent mucins. Biomacromolecules 11:883–888

    Article  CAS  PubMed  Google Scholar 

  • Kitchen SA, Crowder CM, Poole AZ, Weis VM, Meyer E (2015) De novo assembly and characterization of four Anthozoan (phylum Cnidaria) transcriptomes. G3 5:2441–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramarsky-Winter E, Loya Y (2000) Tissue regeneration in the coral Fungia granulosa: The effect of extrinsic and intrinsic factors. Mar Biol 137:867–873

    Article  Google Scholar 

  • Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Bio Ecol 300:217–252

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP, Shick JM (1989) Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar Biol 102:243–255

    Article  Google Scholar 

  • Marshall PA (2000) Skeletal damage in reef corals: relating resistance to colony morphology. Mar Ecol Prog Ser 200:177–189

    Article  Google Scholar 

  • Mayfield AB, Hsiao YY, Fan TY, Chen CS, Gates RD (2010) Evaluating the temporal stability of stress-activated protein kinase and cytoskeleton gene expression in the Pacific reef corals Pocillopora damicornis and Seriatopora hystrix. J Exp Mar Bio Ecol 395:215–222

    Article  Google Scholar 

  • Mayfield AB, Wang LH, Tang PC, Fan TY, Hsiao YY, Tsai CL, Chen CS (2011) Assessing the impacts of experimentally elevated temperature on the biological composition and molecular chaperone gene expression of a reef coral. PLoS One 6:e26529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meesters EH, Bak RP (1993) Effects of coral bleaching on tissue regeneration potential and colony survival. 96:189–198

    Google Scholar 

  • Meesters EH, Noordeloos M, Bak RPM (1994) Damage and regeneration: Links to growth in the reef-building coral Montastrea annularis. Mar Ecol Prog Ser 112:119–128

    Article  Google Scholar 

  • Meesters EH, Wesseling I, Bak RPM (1996) Reef-building corals and the relation with colony morphology. Bull Mar Sci 58:838–852

    Google Scholar 

  • Meesters EH, Pauchli W, Bak RPM (1997) Predicting regeneration of physical damage on a reef-building coral by regeneration capacity and lesion shape. Mar Ecol Prog Ser 146:91–99

    Article  Google Scholar 

  • Meikle P, Richards GN, Yellowlees D (1988) Structural investigations on the mucus from six species of coral. Mar Biol 99:187–193

    Article  CAS  Google Scholar 

  • Miller DJ, Ball EE, Forêt S, Satoh N (2011) Coral genomics and transcriptomics - Ushering in a new era in coral biology. J Exp Mar Bio Ecol 408:114–119

    Article  CAS  Google Scholar 

  • Mydlarz LD, Palmer CV (2011) The presence of multiple phenoloxidases in Caribbean reef-building corals. Comp Biochem Physiol – Part A 159:372–378

    Article  CAS  Google Scholar 

  • Nagelkerken I, Bak R (1998) Differential regeneration of artificial lesions among sympatric morphs of the Caribbean corals Porites astreoides and Stephanocoenia michelinii. Mar Ecol Prog Ser 171:279–283

    Article  Google Scholar 

  • Novak ML, Bryer SC, Cheng M, Nguyen M-H, Conley KL, Cunningham AK, Xue B, Sisson TH, You J-S, Hornberger TA, Koh TJ (2011) Macrophage-specific expression of urokinase-type plasminogen activator promotes skeletal muscle regeneration. J Immunol 187:1448–1457

    Article  PubMed  Google Scholar 

  • Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS One 4:e7298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer CV, Traylor-Knowles NG, Willis BL, Bythell JC (2011) Corals use similar immune cells and wound-healing processes as those of higher organisms. PLoS One 6:e23992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • PEAKS Team (2013) PEAKS 7 User Manual. Waterloo, ON

  • Polato NR, Voolstra CR, Schnetzer J, DeSalvo MK, Randall CJ, Szmant AM, Medina M, Baums IB (2010) Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata. PLoS One 5:e11221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Renegar D-EA (2015) Histology and ultrastructure of Montastraea cavernosa and Porites astreoides during regeneration and recruitment: Anthropogenic stressors and transplant success. Ph.D. thesis, Nova State University

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Robbart ML, Peckol P, Scordilis SP, Curran HA, Brown-Saracino J (2004) Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A. tenuifolia in Belize. Mar Ecol Prog Ser 283:151–160

    Article  Google Scholar 

  • Rodríguez-Martínez RE, Jordan-Garza AG, Jordan-Dahlgren E (2016) Low regeneration of lesions produced by coring in Orbicella faveolata. Peer J 4:e1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Villalobos JC, Work TM, Calderon-Aguilera LE (2016) Wound repair in Pocillopora. J Invertebr Pathol 139:1–5

    Article  PubMed  Google Scholar 

  • Rossi S, Snyder MJ (2001) Competition for space among sessile marine invertebrates: changes in HSP70 expression in two pacific Cnidarians. Biol Bull 201:385–393

    Article  CAS  PubMed  Google Scholar 

  • Roth MS, Latz MI, Goericke R, Deheyn DD (2010) Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J Exp Biol 213:3644–3655

    Article  CAS  PubMed  Google Scholar 

  • Rougée LRA, Richmond RH, Collier AC (2014) Natural variations in xenobiotic-metabolizing enzymes: Developing tools for coral monitoring. Coral Reefs 33:523–535

    Article  Google Scholar 

  • Sabine AM, Smith TB, Williams DE, Brandt ME (2015) Environmental conditions influence tissue regeneration rates in scleractinian corals. Mar Poll Bull 95:253–264

    CAS  Google Scholar 

  • Sabourault C, Ganot P, Deleury E, Allemand D, Furla P (2009) Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis. BMC Genomics 10:333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seveso D, Montano S, Strona G, Orlandi I, Vai M, Galli P (2012) Up-regulation of Hsp60 in response to skeleton eroding band disease but not by algal overgrowth in the scleractinian coral Acropora muricata. Mar Environ Res 78:34–39

    Article  CAS  PubMed  Google Scholar 

  • Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: A possible first line of defense. FEMS Microbiol Ecol 67:371–380

    Article  CAS  PubMed  Google Scholar 

  • Siboni N, Abrego D, Motti CA, Tebben J, Harder T (2014) Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora. PLoS One 9:e91082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slattery M, Ankisetty S, Corrales J, Marsh-Hunkin KE, Gochfeld DJ, Willett KL, Rimoldi JM (2012) Marine proteomics: A critical assessment of an emerging technology. J Nat Prod 75:1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Soderhall K, Smith VJ (eds) (1986) Hemocytic and humoral immunity in arthropods. Wiley, New York, pp 251–286

    Google Scholar 

  • Squires DF (1958) Stony corals from the vicinity of Bimini, Bahamas, British West Indies. Bull Am Museum Nat Hist 115:215–262

    Google Scholar 

  • Stenken JA, Poschenrieder AJ (2015) Bioanalytical chemistry of cytokines-a review. Anal Chim Acta 853:95–115

    Article  CAS  PubMed  Google Scholar 

  • Stevens FC (1982) Calmodulin: an introduction. Can J Biochem Cell Biol 61:906–910

    Article  Google Scholar 

  • Sunagawa S, DeSalvo MK, Voolstra CR, Reyes-Bermudez A, Medina M (2009a) Identification and gene expression analysis of a taxonomically restricted cysteine-rich protein family in reef-building corals. PLoS One 4:e4865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, Weis VM, Medina M, Schwarz JA (2009b) Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10:258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swulius MT, Waxham MN (2008) Ca2+/calmodulin-dependent protein kinases. Cell Mol Life Sci 65:2637–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development 138:1447–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  • Thompson A, Schäfer JJ, Kuhn K, Kienle S, Schwarz J, Schmidt GG, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim Biophys Acta - Proteins Proteomics 1824:68–88

    Article  CAS  Google Scholar 

  • Van Veghel MLJ, Bak RPM (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis III. Fecundity and colony structure. Mar Ecol Ser 109:221–227

    Article  Google Scholar 

  • Van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883

    Article  CAS  PubMed  Google Scholar 

  • van De Water JAJM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, Van Oppen MJH (2015a) The coral immune response facilitates protection against microbes during tissue regeneration. Mol Ecol 24:3390–3404

    Article  PubMed  Google Scholar 

  • van de Water JAJM, Leggat W, Bourne DG, van Oppen MJH, Willis BL, Ainsworth TD (2015b) Elevated seawater temperatures have a limited impact on the coral immune response following physical damage. Hydrobiologia 759:201–214

    Article  CAS  Google Scholar 

  • Voolstra CR, Sunagawa S, Matz MV, Bayer T, Aranda M, Buschiazzo E, DeSalvo MK, Lindquist E, Szmant AM, Coffroth MA, Medina M (2011) Rapid evolution of coral proteins responsible for interaction with the environment. PLoS One 6:e20392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Tateno H, Nakamura-Tsuruta S, Kominami J, Hirabayashi J, Nakamura O, Watanabe T, Kamiya H, Naganuma T, Ogawa T, Naudé RJ, Muramoto K (2009) The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. Dev Comp Immunol 33:187–197

    Article  CAS  PubMed  Google Scholar 

  • Wenger Y, Buzgariu W, Reiter S, Galliot B (2014) Injury-induced immune responses in Hydra. Semin Immunol 26:277–294

    Article  CAS  PubMed  Google Scholar 

  • Whitten MMA, Tew IF, Lee BL, Ratcliffe NA (2004) A novel role for an insect apolipoprotein (Apolipophorin III) in β-1,3-glucan pattern recognition and cellular encapsulation reactions. J Immunol 172:2177–2185

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2016) Elegant graphics for data analysis. Springer-Verlag, New York

    Google Scholar 

  • Wootton EC, Pipe RK (2003) Structural and functional characterisation of the blood cells of the bivalve mollusc, Scrobicularia plana. Fish Shellfish Immunol 15:249–262

    Article  CAS  PubMed  Google Scholar 

  • Work TM, Aeby GS (2010) Wound repair in Montipora capitata. J Invert Pathol 105:116–119

    Article  Google Scholar 

  • Young JAC (1974) The nature of tissue regeneration after wounding in the sea anemone Callactis parasitica (Couch). J Mar Biol Assoc UK 54:599–617

    Article  Google Scholar 

  • Zhang X, Guo L, Collage RD, Stripay JL, Tsung A, Lee JS, Rosengart MR (2011) Calcium/calmodulin-dependent protein kinase (CaMK) Iα mediates the macrophage inflammatory response to sepsis. J Leukoc Biol 90:249–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Yu X, Tang J, Zhu Y, Chen G, Guo L, Huang B (2017) Dual recognition activity of a rhamnose-binding lectin to pathogenic bacteria and zooxanthellae in stony coral Pocillopora damicornis. Dev Comp Immunol 70:88–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Annette Patrick, Deefer Diving Carriacou, and EcoDive Grenada for their help with the collection of samples in the field, Bioinformatics Solutions Inc. and Dyanne Brewer for their technical assistance interpreting LC–MS data. Funding for this research was provided by a NSERC Discovery Grant (Lumsden) and St. George’s University. Horricks received an OVC Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan A. Horricks.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horricks, R.A., Herbinger, C.M., Lillie, B.N. et al. Differential protein abundance during the first month of regeneration of the Caribbean star coral Montastraea cavernosa. Coral Reefs 38, 45–61 (2019). https://doi.org/10.1007/s00338-018-01754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-01754-9

Keywords

Navigation