Skip to main content
Log in

Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The green filamentous endolithic alga Ostreobium quekettii resides inside skeletons of scleractinian corals in close proximity with their tissue and plays a role in the viability of the coral and its associates. This study examined the distribution and diversity of O. quekettii within scleractinian corals from the Red Sea (Eilat, Gulf of Aqaba), using a molecular phylogenetic marker. The massive coral species Porites lutea and Goniastrea perisi were sampled from a depth range of 6–55 m, and ribulose 1,5-bisphosphate carboxylase large subunit gene (rbcL) DNA sequence of the alga was amplified and analyzed for diversity and distribution of ecological patterns. This work reveals that O. quekettii has at least seven different clades distributed along a depth gradient in the examined scleractinian corals. Among the seven identified clades, four were found only in P. lutea, while the other two clades are found in both P. lutea and G. perisi. Goniastrea perisi colonies at depth of 30 m had a distinct O. quekettii clade that was absent in P. lutea. It is obvious from this study that the green endolithic alga O. quekettii is not a single genotype as previously considered but a complex of genotypes and that this differentiation is of ecological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ainsworth TD, Fine M, Blackall LL, Hoegh-Guldberg O (2006) Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microbiol 72:3016–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barneah O, Weis VM, Perez S, Benayahu Y (2004) Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters. Mar Ecol Prog Ser 275:89–95

    Article  CAS  Google Scholar 

  • Bentis CJ, Kaufman L, Golubic S (2000) Endolithic fungi in reef-building corals (Order : Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol Bull 198:254–260

    Article  CAS  PubMed  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc B 273:2305–2312

    Article  PubMed  PubMed Central  Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326

    Article  Google Scholar 

  • Carilli JE (2009) Century-scale records of coral growth and water quality from the Mesoamerican reef reveal increasing anthropogenic stress and decreasing coral resilience. Ph.D. dissertation, UC San Diego: Scripps Institution of Oceanography

  • Carreiro-Silva M, McClanahan TR, Kiene WE (2009) Effects of inorganic nutrients and organic matter on microbial euendolithic community composition and microbioerosion rates. Mar Ecol Prog Ser 392:1–15

    Article  CAS  Google Scholar 

  • Chazottes V, Cabioch G, Golubic S, Radtke G (2009) Bathymetric zonation of modern microborers in dead coral substrates from New Caledonia–Implications for paleodepth reconstructions in Holocene corals. Palaeogeogr Palaeocl 280:456–468

    Article  Google Scholar 

  • Famà P, Wysor B, Kooistra W, Zuccarello GC (2002) Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplat tufA gene. J Phycol 38:1040–1050

    Article  Google Scholar 

  • Fine M, Loya Y (2002) Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc Lond B Biol Sci 269:1205–1210

    Article  Google Scholar 

  • Fine M, Steindler L, Loya Y (2004) Endolithic algae photoacclimate to increased irradiance during coral bleaching. Mar Freshw Res 55:115–121

    Article  CAS  Google Scholar 

  • Fine M, Meroz-Fine E, Hoegh-Guldberg O (2005) Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J Exp Biol 208:75–81

    Article  PubMed  Google Scholar 

  • Fine M, Roff G, Ainsworth TD, Hoegh-Guldberg O (2006) Phototrophic microendoliths bloom during coral “white syndrome”. Coral Reefs 25:577–581

    Article  Google Scholar 

  • Forsterra F, Haussermann V (2008) Unusual symbiotic relationships between microendolithic phototrophic organisms and azooxanthellate cold-water corals from Chilean fjords. Mar Ecol Prog Ser 370:121–125

    Article  Google Scholar 

  • Fricke HW, Knauer B (1986) Diversity and spatial pattern of coral communities in the Red-Sea Upper Twilight Zone. Oecologia 71:29–37

    Article  CAS  PubMed  Google Scholar 

  • Gektidis M, Dubinsky Z, Goffredo S (2007) Microendoliths of the Shallow Euphotic Zone in open and shaded habitats at 30 degrees N - Eilat, Israel - paleoecological implications. Facies 53:43–55

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid Symp 41:95–98

    CAS  Google Scholar 

  • Händeler KHA, Wägele HWA, Wahrmund UTE, Rüdinger MRU, Knoop V (2010) Slugs’ last meals: molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda). Mol Ecol Resour 10:968–978

    Article  PubMed  Google Scholar 

  • Highsmith RC (1981) Lime-boring algae in coral skeletons. J Exp Mar Biol Ecol 55:267–281

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Johannes RE, Wiebe WJ (1970) A method for determination of coral tissue biomass and composition. Limnol Oceanogr 15:822–824

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kramarsky-Winter E, Harel M, Siboni N, Ben Dov E, Brickner I, Loya Y, Kushmaro A (2006) Identification of a protist-coral association and its possible ecological role. Mar Ecol Prog Ser 317:67–73

    Article  Google Scholar 

  • LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134

    Article  CAS  PubMed  Google Scholar 

  • Lam DW, Zechman FW (2006) Phylogenetic analyses of the Bryopsidales (Ulvophyceae, Chlorophyta) based on RUBISCO large subunit gene sequences. J Phycol 42:669–678

    Article  CAS  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Priess K (1995a) Fungi in corals - Symbiosis or disease - Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar Ecol Prog Ser 117:137–147

    Article  Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings P (1995b) Microbial endoliths in skeletons of live and dead corals - Porites lobata (Moorea, French-Polynesia). Mar Ecol Prog Ser 117:149–157

    Article  Google Scholar 

  • Littman RA, Willis BL, Bourne DG (2009) Bacterial communities of juvenile corals infected with different Symbiodinium (dinoflagellate) clades. Mar Ecol Prog Ser 389:45–59

    Article  Google Scholar 

  • Lukas KJ (1974) Two species of the chlorophyte genus Ostreobium from skeletons of Atlantic and Caribbean reef corals. J Phycol 10:331–335

    Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in coral reefs. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam (Ecosystems of the World, vol 25, pp 75–87)

  • Pochon X, LaJeunesse TC, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27

    Article  Google Scholar 

  • Priess K, Le Campion-Alsumard T, Golubic S, Gadel F, Thomassin BA (2000) Fungi in corals: black bands and density-banding of Porites lutea and P. lobata skeleton. Mar Biol 136:19–27

    Article  Google Scholar 

  • Ralph PJ, Larkum AWD, Kuhl M (2007) Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, spectral reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia, Porites lutea and Goniastrea australensis. Mar Biol 152:395–404

    Article  CAS  Google Scholar 

  • Rohwer F, Kelley S (2004) Culture-independent analyses of coral-associated microbes. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Heidelberg, pp 265–278

    Chapter  Google Scholar 

  • Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20:85–91

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  PubMed  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlichter D, Zscharnack B, Krisch H (1995) Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82:561–564

    Article  CAS  Google Scholar 

  • Schlichter D, Kampmann H, Conrady S (1997) Trophic potential and photoecology of endolithic algae living within coral skeletons. Mar Ecol 18:299–317

    Article  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) v4.0.b10. Sinauer, Sunderland

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596

  • Titlyanov EA, Kiyashko SI, Titlyanova TV, Kalita TL, Raven JA (2008) 13 C and 15 N values in reef corals Porites lutea and P. cylindrica and in their epilithic and endolithic algae. Mar Biol 155:353–361

    Article  Google Scholar 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422–434

    Article  Google Scholar 

  • Tribollet A, Decherf G, Hutchings PA, Peyrot-Clausade M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21:424–432

    Google Scholar 

  • Tribollet A, Langdon C, Golubic S, Atkinson M (2006) Endolithic microflora major primary producers in dead carbonate substrates of Hawaiian coral reefs. J Phycol 42:292–303

    Article  CAS  Google Scholar 

  • Tribollet A, Godinot C, Atkinson MJ, Langdon C (2009) Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochem Cycles 23: GB3008

  • Ulstrup KE, Kuhl M, Bourne DG (2007) Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent. Appl Environ Microb 73:1968

    Article  CAS  Google Scholar 

  • Van Oppen MJH (2004) Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals. Mar Biol 144:1–7

    Article  Google Scholar 

  • Verbruggen H, De Clerck O, Cocquyt E, Kooistra W, Coppejans E (2005) Morphometric taxonomy of siphonous green algae: A methodological study within the genus Halimeda (Bryopsidales). J Phycol 41:126–139

    Article  Google Scholar 

  • Verbruggen H, Leliaert F, Maggs CA, Shimada S, Schils T, Provan J, Booth D, Murphy S, De Clerck O, Littler DS, Littler MM, Coppejans E (2007) Species boundaries and phylogenetic relationships within the green algal genus Codium (Bryopsidales) based on plastid DNA sequences. Mol Phylogenet Evol 44:240–254

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen H, Vlaeminck C, Sauvage T, Sherwood AR, Leliaert F, De Clerck O (2009a) Phylogenetic analysis of Pseudochlorodesmis strains reveals cryptic diversity above the family level in the siphonous green algae (Bryopsidales, Chlorophyta). J Phycol 45:726–731

    Article  PubMed  Google Scholar 

  • Verbruggen H, Ashworth M, LoDuca ST, Vlaeminck C, Cocquyt E, Sauvage T, Zechman FW, Littler DS, Littler MM, Leliaert F (2009b) A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol Phylogenet Evol 50:642–653

    Article  CAS  PubMed  Google Scholar 

  • Weil E, Smith G, Gil-Agudelo DL (2006) Status and progress in coral reef disease research. Dis Aquat Org 69:1–7

    Article  PubMed  Google Scholar 

  • Winters G, Beer S, Zvi BB, Brickner I, Loya Y (2009) Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade. Mar Ecol Prog Ser 384:107–119

    Article  Google Scholar 

  • Wisshak M, Gektidis M, Freiwald A, Lundalv T (2005) Bioerosion along a bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies 51:99–123

    Article  Google Scholar 

  • Woolcott GW, Knoller K, King RJ (2000) Phylogeny of the Bryopsidaceae (Bryopsidales, Chlorophyta): cladistic analyses of morphological and molecular data. Phycologia 39:471–481

    Article  Google Scholar 

  • Yarden O, Ainsworth TD, Roff G, Leggat W, Fine M, Hoegh-Guldberg O (2007) Increased prevalence of ubiquitous Ascomycetes in an acropoid coral (Acropora formosa) exhibiting symptoms of brown band syndrome and skeletal eroding band disease. Appl Environ Microb 73:2755

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoz Fine.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutner-Hoch, E., Fine, M. Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs 30, 643–650 (2011). https://doi.org/10.1007/s00338-011-0750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0750-6

Keywords

Navigation