Skip to main content

Advertisement

Log in

Limited genetic connectivity of Pavona gigantea in the Mexican Pacific

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral reefs are the most complex and diverse of aquatic ecosystems. Their vulnerability and deterioration in the face of anthropogenic disturbance require the adoption of conservation and restoration efforts to maintain their resilience, for which connectivity is of paramount importance. Dispersal of meroplanktonic larval stages drives the levels of connectivity among coral populations and is influenced by the local current regime, the synchronization of spawning events, and the capacity of larvae to reach recruitment sites. This research aims to quantify the levels of connectivity among Pavona gigantea populations in the Mexican Pacific, using two mitochondrial genes and a nuclear gene. Mitochondrial genes were insufficiently variable to test geographical heterogeneity, whereas the more variable (h ≥ 0.86) nuclear rDNA indicated significant geographic differentiation (Φ ST  = 0.159, P < 0.001) among five locations along the Mexican Pacific, but no evidence of isolation by distance. Gene flow was limited among most sampled locales, and the largest estimate suggested moderate and unidirectional gene flow from Huatulco Bays to La Paz Bay and Marietas Islands. We found partial agreement between the patterns of connectivity among localities and the general pattern of superficial oceanographic circulation of the region, particularly in reference with the expected influence of the northward flowing West Mexican Current. These results suggest a limited demographic connectivity among Pavona gigantea populations along the Mexican Pacific, mediated by passive larval transport, and highlight the difficulty of predicting connectivity patterns on the basis of highly variable oceanographic regimes and reproductive events. The limited connectivity is of consequence for the viability and vulnerability of local populations and should be considered in the management and conservation strategies in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Aljanabi SM, Martínez I (1997) Universal and rapad SALT-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 22:4692–4693

    Article  Google Scholar 

  • Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning along the Great Barrier Reef, Australia. Evolution 54:1590–1605

    Article  CAS  PubMed  Google Scholar 

  • Baums IB (2008) A restoration genetics guide for coral reef conservation. Mol Ecol 17:2796–2811

    Article  PubMed  Google Scholar 

  • Baums IB, Paris CB, Chérubin LM (2006) A bio-oceanographic filter to larval dispersal in a reef-building coral. Limnol Oceanogr 51:1969–1981

    Article  Google Scholar 

  • Beerli P (2004) Migrate documentation. School of Computational Science and Department of Biological Science. Florida State University, Tallahassee, FL

    Google Scholar 

  • Benzie JAH (1999) Genetic structure of coral reef organisms - ghosts of dispersal past. Am Zool 39:131–145

    Article  Google Scholar 

  • Blancas-López AV (2009) Conectividad demográfica de Pocillopora verrucosa (Anthozoa:Scleractinia) en el Pacífico mexicano. MSc. thesis, CICESE, p83

  • Bohonak AJ (2002) IBD (Isolation By Distance): A program for analyses of isolation by distance. J Hered 93:153–154

    Article  CAS  PubMed  Google Scholar 

  • Botsford LW, White JW, Coffroth MA, Paris CB, Planes S, Shearer TL, Thorrold SR, Jones GP (2009) Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Carlon DB (1999) The evolution of mating systems in tropical reef corals. Trends Ecol Evol 14:491–495

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Romo HE, Correa-Sandoval F, Paz-García DA, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Hernández-Cortés MP (2008) Genetic structure of a scleractinia coral, Pocillopora damicornis, in the Mexican Pacific. Proc 11th Int Coral Reef Symp: 429–433

  • Concepcion GT, Medina M, Toonen RJ (2006) Noncoding mitochondrial loci for corals. Mol Ecol Notes 6:1208–1211

    Article  CAS  Google Scholar 

  • Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:S39–S46

    Article  Google Scholar 

  • Dai CD, Fan TY, Yu JK (2000) Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar Ecol Prog Ser 201:179–187

    Article  Google Scholar 

  • Duran S, Pascual M, Turon X (2004) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35

    Article  CAS  Google Scholar 

  • Edmands S (2001) Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol Ecol 10:743–1750

    Article  Google Scholar 

  • Elmhirst T, Connolly SR, Hughes TP (2009) Connectivity, regime shifts and the resilience of coral reefs. Coral Reefs 28:949–957

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2006) Arlequin: An integrated software package for population genetic data analysis. Computational and Molecular Population Genetic Lab (CMPG), Bern, Switzerland

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial citochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Gay SL, Andrews JC (1994) The effects of recruitment strategies on coral larvae settlement distributions at Helix Reef. In: Sammarco PW, Heron ML (eds) Coastal and estuarine studies: The bio-physics of marine larval dispersal. American Geophysical Union, Washington, DC, pp 73–88

    Chapter  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts hypotheses and implications. Global Change Biol 2:495–509

    Article  Google Scholar 

  • Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23

    Article  Google Scholar 

  • Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands. University of California Press, Berkeley, p 330

    Google Scholar 

  • Glynn PW, Colley SB, Gassman NJ, Black K, Cortés J, Maté JL (1996) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). II1. Agariciidae (Pavona gigantea and Gardineroseris planulata). Mar Biol 125:579–601

    Google Scholar 

  • Hellberg ME (1995) Stepping-stone gene flow in the solitary coral Balanophyllia elegans: Equilibrium and nonequilibrium at different spatial scales. Mar Biol 123:573–581

    Article  Google Scholar 

  • Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6 [doi: 10.1186/1471-2148-1186-1124]

  • Hellberg ME (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473

    Article  Google Scholar 

  • Higgis D, Thompson J, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642

    Article  PubMed  Google Scholar 

  • Iglesias-Prieto R, Reyes-Bonilla H, Riosmena-Rodriguez R (2003) Effects of 1997–1998 ENSO on coral reef communities in the Gulf of California, Mexico. Geofis Int 42:467–471

    Google Scholar 

  • Jaap WC (2000) Coral reef restoration. Ecol Eng 15:345–364

    Article  Google Scholar 

  • Jacobs DK, Haney TA, Louie KD (2004) Genes, diversity, and geologic process on the Pacific coast. Annu Rev Earth Planet Sci 32:601–652

    Article  CAS  Google Scholar 

  • Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325

    Article  Google Scholar 

  • Kessler WS (2006) The circulation of the eastern tropical Pacific: A review. Prog Oceanogr 69:181–217

    Article  Google Scholar 

  • Kiessling W, Simpson C, Foote M (2010) Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196–198

    Article  CAS  PubMed  Google Scholar 

  • Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci USA 98:5419–5425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavín MF, Beier E, Gómez-Valdés J, Godínez VM, García J (2006a) On the summer poleward coastal current off SW México. Geophys Res Lett 33:LO2601

    Article  Google Scholar 

  • Lavín MF, Fiedler PC, Amador JA, Ballance LT, Färber-Lorda J, Mestas-Nuñez AM (2006b) A review of eastern tropical Pacific oceanography: Summary. Prog Oceanogr 69:391–398

    Article  Google Scholar 

  • López-Sandoval DC, Lara-Lara JR, Álvarez-Borrego S (2009) Phytoplankton production by remote sensing in the region off Cabo Corrientes, Mexico. Hidrobiologica 19:185–192

    Google Scholar 

  • Maté J (2003) Ecological, genetic, and morphological differences among three Pavona (Cnidaria: Anthozoa) species from the Pacific coast of Panama: I. P. varians, P. chiriquiensis, and P. frondifera. Mar Biol 142:427–440

    Article  Google Scholar 

  • McCook LJ, Almany GR, Berumen ML, Day JC, Green AL, Jones GP, Leis JM, Planes S, Russ GR, Sale PF, Thorrold SR (2009) Management under uncertainty: guide-lines for incorporating connectivity into the protection of coral reefs. Coral Reefs 28:353–366

    Article  Google Scholar 

  • Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89–97

    Article  CAS  PubMed  Google Scholar 

  • Miller KJ, Ayre DJ (2008) Protection of genetic diversity and maintenance of connectivity among reef corals within Marine Protected Areas. Conserv Biol 22:1245–1254

    Article  PubMed  Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233

    Article  Google Scholar 

  • Moothien Pillay KR, Asahida T, Chen AC, Terashima H, Ida H (2006) ITS ribosomal DNA distinctions and the genetic structures of populations of two sympatric species of Pavona (Cnidaria: Scleractinia) from mauritius. Zool Stud 45:132–144

    Google Scholar 

  • Nunes F, Norris RD, Knowlton N (2009) Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral. Mol Ecol 18:4283–4297

    Article  CAS  PubMed  Google Scholar 

  • Palumbi SR (1997) Molecular biogeography of the Pacific. Coral Reefs 16:S47–S52

    Article  Google Scholar 

  • Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517

    Article  Google Scholar 

  • Paz-García DA, Correa-Sandoval F, Chávez-Romo HE, Reyes-Bonilla H, López-Pérez A, Medina-Rosas P, Hernández-Cortés P (2008) Genetic structure of the massive coral Porites panamensis (Anthozoa: Scleractinia) from the Mexican Pacific. Proc 11th Int Coral Reef Symp: 449–453

  • Pérez-Vivar TL, Reyes Bonilla H, Padilla C (2006) Corales pétreos (Scleractinia) de las islas Marías, Pacífico de México. Cienc Mar 32:259–270

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics Applications Note 14:817–818

    Article  CAS  Google Scholar 

  • Reyes-Bonilla H, López-Pérez RA (1998) Biogeografía de corales pétreos del Pacífico Mexicano. Cienc Mar 24:211–223

    Google Scholar 

  • Reyes-Bonilla H, Carriquiry JD, Leyte-Morales GE, Cupul-Magaña AL (2002) Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997–1999) on coral reefs of the western coast of Mexico. Coral Reefs 21:368–372

    Google Scholar 

  • Reyes-Bonilla H, Calderón-Aguilera LE, Cruz G, Medina-Rosas P, López-Pérez RA, Herrero MD, Leyte-Morales GE, Cupul-Magaña AL, Carriquiry-Beltrán JD (2005) Atlas de Corales Pétreos (Anthozoa: Scleractinia) del Pacífico Mexicano. CICESE, CONABIO, CONACYT, UABCS, U de G y UMar, Mexico

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ridgway T (2002) Testing the applicability of molecular genetics markers to population analyses of Scleractinian corals. Symbiosis 33:243–261

    CAS  Google Scholar 

  • Ridgway T, Hoegh-Guldberg O, Ayre DJ (2001) Panmixia in Pocillopora verrucosa from South Africa. Mar Biol 139:175–181

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Mol Ecol Notes 11:1177–1189

    Article  CAS  Google Scholar 

  • Rodríguez-Troncoso AP (2006) Ciclo reproductivo de tres especies de corales formadores de arrecife en Bahía La Entrega, Oaxaca, México. MSc. thesis, Universidad Autónoma de Baja California, p118

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphisms analyses by the coalescent and other methods. Bioinformatics (Oxf) 19:2496–2497

    Article  CAS  Google Scholar 

  • Sagarin R, Carlsson J, Duval M, Freshwater W, Godfrey MH, Litaker W, Muñoz R, Noble R, Schultz T, Wynne B (2009) Bringing molecular tools into environmental resource management: Untangling the molecules to policy pathway. PloS Biol 7 [doi: 10.1371/journal.pbio.1000069]

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Sinniger F, Chevaldonne P, Pawlowski J (2007) Mitochondrial genome of Savalia savaglia (Cnidaria, Hexacorallia) and early metazoan phylogeny. J Mol Evol 64:196–203

    Article  CAS  PubMed  Google Scholar 

  • Steiner SCC, Cortés J (1996) Spermatozoan ultrastructure of scleractinian corals from the eastern Pacific: Pocilloporidae and Agariciidae. Coral Reefs 15:143–147

    Article  Google Scholar 

  • Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:251–271

    Google Scholar 

  • Torres-Orozco E, Trasviña A, Muhlia-Melo A, Ortega-García S (2005) Dinámica de mesoescala y capturas de atún aleta amarilla en el Pacífico Mexicano. Cienc Mar 31:671–683

    Google Scholar 

  • Veron J (2000) Corals of the world. Austalian Institute of Marine Science, Townsville, Qld

    Google Scholar 

  • Vizcaíno-Ochoa V (2003) Biología reproductiva de tres especies de corales formadores de arrecifes en Bahía de Banderas, México. M.Sc. thesis, Univesidad Aútonoma de Baja California, p73

  • Vollmer SV, Palumbi SR (2007) Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: Implications for the recovery of endangered reefs. J Hered 98:40–50

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor WJ (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Snninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic Press Inc., New York, pp 315–322

    Google Scholar 

  • Yu JK, Wang HY, Lee SC, Dai CF (1999) Genetic structure of a scleractinian coral, Mycedium elephantotus, in Taiwan. Mar Biol 133:21–28

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the teams of collaborators along of the Mexican Pacific for assistance in sample collection (UABCS, CUC of U de G, and UMar). This work was supported by CICESE internal grant (awarded to ARO), CONACYT grant no. 80228 (awarded to RALP), CONACYT-SEMARNAT no. 23390 (awarded to LECA), and a grant from the “Programa del Mejoramiento del Posgrado-SEP” (awarded to HRB). The first author received a postgraduate fellowship from CONACYT to support her M.Sc. program in Marine Ecology at CICESE. We thank Mike Hellberg for generously providing constructive suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rocha-Olivares.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saavedra-Sotelo, N.C., Calderon-Aguilera, L.E., Reyes-Bonilla, H. et al. Limited genetic connectivity of Pavona gigantea in the Mexican Pacific. Coral Reefs 30, 677–686 (2011). https://doi.org/10.1007/s00338-011-0742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0742-6

Keywords

Navigation