Advertisement

Coral Reefs

, Volume 30, Issue 3, pp 677–686 | Cite as

Limited genetic connectivity of Pavona gigantea in the Mexican Pacific

  • N. C. Saavedra-Sotelo
  • L. E. Calderon-Aguilera
  • H. Reyes-Bonilla
  • R. A. López-Pérez
  • P. Medina-Rosas
  • A. Rocha-Olivares
Report

Abstract

Coral reefs are the most complex and diverse of aquatic ecosystems. Their vulnerability and deterioration in the face of anthropogenic disturbance require the adoption of conservation and restoration efforts to maintain their resilience, for which connectivity is of paramount importance. Dispersal of meroplanktonic larval stages drives the levels of connectivity among coral populations and is influenced by the local current regime, the synchronization of spawning events, and the capacity of larvae to reach recruitment sites. This research aims to quantify the levels of connectivity among Pavona gigantea populations in the Mexican Pacific, using two mitochondrial genes and a nuclear gene. Mitochondrial genes were insufficiently variable to test geographical heterogeneity, whereas the more variable (h ≥ 0.86) nuclear rDNA indicated significant geographic differentiation (Φ ST  = 0.159, P < 0.001) among five locations along the Mexican Pacific, but no evidence of isolation by distance. Gene flow was limited among most sampled locales, and the largest estimate suggested moderate and unidirectional gene flow from Huatulco Bays to La Paz Bay and Marietas Islands. We found partial agreement between the patterns of connectivity among localities and the general pattern of superficial oceanographic circulation of the region, particularly in reference with the expected influence of the northward flowing West Mexican Current. These results suggest a limited demographic connectivity among Pavona gigantea populations along the Mexican Pacific, mediated by passive larval transport, and highlight the difficulty of predicting connectivity patterns on the basis of highly variable oceanographic regimes and reproductive events. The limited connectivity is of consequence for the viability and vulnerability of local populations and should be considered in the management and conservation strategies in the region.

Keywords

Population connectivity Genetic structure Gene flow Passive larval transport Mexican Pacific Hydrography 

Notes

Acknowledgements

We gratefully acknowledge the teams of collaborators along of the Mexican Pacific for assistance in sample collection (UABCS, CUC of U de G, and UMar). This work was supported by CICESE internal grant (awarded to ARO), CONACYT grant no. 80228 (awarded to RALP), CONACYT-SEMARNAT no. 23390 (awarded to LECA), and a grant from the “Programa del Mejoramiento del Posgrado-SEP” (awarded to HRB). The first author received a postgraduate fellowship from CONACYT to support her M.Sc. program in Marine Ecology at CICESE. We thank Mike Hellberg for generously providing constructive suggestions that improved the manuscript.

References

  1. Aljanabi SM, Martínez I (1997) Universal and rapad SALT-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 22:4692–4693CrossRefGoogle Scholar
  2. Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning along the Great Barrier Reef, Australia. Evolution 54:1590–1605CrossRefPubMedGoogle Scholar
  3. Baums IB (2008) A restoration genetics guide for coral reef conservation. Mol Ecol 17:2796–2811CrossRefPubMedGoogle Scholar
  4. Baums IB, Paris CB, Chérubin LM (2006) A bio-oceanographic filter to larval dispersal in a reef-building coral. Limnol Oceanogr 51:1969–1981CrossRefGoogle Scholar
  5. Beerli P (2004) Migrate documentation. School of Computational Science and Department of Biological Science. Florida State University, Tallahassee, FLGoogle Scholar
  6. Benzie JAH (1999) Genetic structure of coral reef organisms - ghosts of dispersal past. Am Zool 39:131–145CrossRefGoogle Scholar
  7. Blancas-López AV (2009) Conectividad demográfica de Pocillopora verrucosa (Anthozoa:Scleractinia) en el Pacífico mexicano. MSc. thesis, CICESE, p83Google Scholar
  8. Bohonak AJ (2002) IBD (Isolation By Distance): A program for analyses of isolation by distance. J Hered 93:153–154CrossRefPubMedGoogle Scholar
  9. Botsford LW, White JW, Coffroth MA, Paris CB, Planes S, Shearer TL, Thorrold SR, Jones GP (2009) Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28:327–337CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brown JH (1995) Macroecology. University of Chicago Press, ChicagoGoogle Scholar
  11. Carlon DB (1999) The evolution of mating systems in tropical reef corals. Trends Ecol Evol 14:491–495CrossRefPubMedGoogle Scholar
  12. Chavez-Romo HE, Correa-Sandoval F, Paz-García DA, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Hernández-Cortés MP (2008) Genetic structure of a scleractinia coral, Pocillopora damicornis, in the Mexican Pacific. Proc 11th Int Coral Reef Symp: 429–433Google Scholar
  13. Concepcion GT, Medina M, Toonen RJ (2006) Noncoding mitochondrial loci for corals. Mol Ecol Notes 6:1208–1211CrossRefGoogle Scholar
  14. Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:S39–S46CrossRefGoogle Scholar
  15. Dai CD, Fan TY, Yu JK (2000) Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar Ecol Prog Ser 201:179–187CrossRefGoogle Scholar
  16. Duran S, Pascual M, Turon X (2004) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35CrossRefGoogle Scholar
  17. Edmands S (2001) Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol Ecol 10:743–1750CrossRefGoogle Scholar
  18. Elmhirst T, Connolly SR, Hughes TP (2009) Connectivity, regime shifts and the resilience of coral reefs. Coral Reefs 28:949–957CrossRefGoogle Scholar
  19. Excoffier L, Laval G, Schneider S (2006) Arlequin: An integrated software package for population genetic data analysis. Computational and Molecular Population Genetic Lab (CMPG), Bern, SwitzerlandGoogle Scholar
  20. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial citochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  21. Gay SL, Andrews JC (1994) The effects of recruitment strategies on coral larvae settlement distributions at Helix Reef. In: Sammarco PW, Heron ML (eds) Coastal and estuarine studies: The bio-physics of marine larval dispersal. American Geophysical Union, Washington, DC, pp 73–88CrossRefGoogle Scholar
  22. Glynn PW (1996) Coral reef bleaching: facts hypotheses and implications. Global Change Biol 2:495–509CrossRefGoogle Scholar
  23. Glynn PW, Ault JS (2000) A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs 19:1–23CrossRefGoogle Scholar
  24. Glynn PW, Wellington GM (1983) Corals and coral reefs of the Galápagos Islands. University of California Press, Berkeley, p 330Google Scholar
  25. Glynn PW, Colley SB, Gassman NJ, Black K, Cortés J, Maté JL (1996) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). II1. Agariciidae (Pavona gigantea and Gardineroseris planulata). Mar Biol 125:579–601Google Scholar
  26. Hellberg ME (1995) Stepping-stone gene flow in the solitary coral Balanophyllia elegans: Equilibrium and nonequilibrium at different spatial scales. Mar Biol 123:573–581CrossRefGoogle Scholar
  27. Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6 [doi:  10.1186/1471-2148-1186-1124]
  28. Hellberg ME (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473CrossRefGoogle Scholar
  29. Higgis D, Thompson J, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  30. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  31. Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642CrossRefPubMedGoogle Scholar
  32. Iglesias-Prieto R, Reyes-Bonilla H, Riosmena-Rodriguez R (2003) Effects of 1997–1998 ENSO on coral reef communities in the Gulf of California, Mexico. Geofis Int 42:467–471Google Scholar
  33. Jaap WC (2000) Coral reef restoration. Ecol Eng 15:345–364CrossRefGoogle Scholar
  34. Jacobs DK, Haney TA, Louie KD (2004) Genes, diversity, and geologic process on the Pacific coast. Annu Rev Earth Planet Sci 32:601–652CrossRefGoogle Scholar
  35. Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307–325CrossRefGoogle Scholar
  36. Kessler WS (2006) The circulation of the eastern tropical Pacific: A review. Prog Oceanogr 69:181–217CrossRefGoogle Scholar
  37. Kiessling W, Simpson C, Foote M (2010) Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196–198CrossRefPubMedGoogle Scholar
  38. Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci USA 98:5419–5425CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lavín MF, Beier E, Gómez-Valdés J, Godínez VM, García J (2006a) On the summer poleward coastal current off SW México. Geophys Res Lett 33:LO2601CrossRefGoogle Scholar
  40. Lavín MF, Fiedler PC, Amador JA, Ballance LT, Färber-Lorda J, Mestas-Nuñez AM (2006b) A review of eastern tropical Pacific oceanography: Summary. Prog Oceanogr 69:391–398CrossRefGoogle Scholar
  41. López-Sandoval DC, Lara-Lara JR, Álvarez-Borrego S (2009) Phytoplankton production by remote sensing in the region off Cabo Corrientes, Mexico. Hidrobiologica 19:185–192Google Scholar
  42. Maté J (2003) Ecological, genetic, and morphological differences among three Pavona (Cnidaria: Anthozoa) species from the Pacific coast of Panama: I. P. varians, P. chiriquiensis, and P. frondifera. Mar Biol 142:427–440CrossRefGoogle Scholar
  43. McCook LJ, Almany GR, Berumen ML, Day JC, Green AL, Jones GP, Leis JM, Planes S, Russ GR, Sale PF, Thorrold SR (2009) Management under uncertainty: guide-lines for incorporating connectivity into the protection of coral reefs. Coral Reefs 28:353–366CrossRefGoogle Scholar
  44. Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89–97CrossRefPubMedGoogle Scholar
  45. Miller KJ, Ayre DJ (2008) Protection of genetic diversity and maintenance of connectivity among reef corals within Marine Protected Areas. Conserv Biol 22:1245–1254CrossRefPubMedGoogle Scholar
  46. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233CrossRefGoogle Scholar
  47. Moothien Pillay KR, Asahida T, Chen AC, Terashima H, Ida H (2006) ITS ribosomal DNA distinctions and the genetic structures of populations of two sympatric species of Pavona (Cnidaria: Scleractinia) from mauritius. Zool Stud 45:132–144Google Scholar
  48. Nunes F, Norris RD, Knowlton N (2009) Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral. Mol Ecol 18:4283–4297CrossRefPubMedGoogle Scholar
  49. Palumbi SR (1997) Molecular biogeography of the Pacific. Coral Reefs 16:S47–S52CrossRefGoogle Scholar
  50. Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517CrossRefGoogle Scholar
  51. Paz-García DA, Correa-Sandoval F, Chávez-Romo HE, Reyes-Bonilla H, López-Pérez A, Medina-Rosas P, Hernández-Cortés P (2008) Genetic structure of the massive coral Porites panamensis (Anthozoa: Scleractinia) from the Mexican Pacific. Proc 11th Int Coral Reef Symp: 449–453Google Scholar
  52. Pérez-Vivar TL, Reyes Bonilla H, Padilla C (2006) Corales pétreos (Scleractinia) de las islas Marías, Pacífico de México. Cienc Mar 32:259–270Google Scholar
  53. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics Applications Note 14:817–818CrossRefGoogle Scholar
  54. Reyes-Bonilla H, López-Pérez RA (1998) Biogeografía de corales pétreos del Pacífico Mexicano. Cienc Mar 24:211–223Google Scholar
  55. Reyes-Bonilla H, Carriquiry JD, Leyte-Morales GE, Cupul-Magaña AL (2002) Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997–1999) on coral reefs of the western coast of Mexico. Coral Reefs 21:368–372Google Scholar
  56. Reyes-Bonilla H, Calderón-Aguilera LE, Cruz G, Medina-Rosas P, López-Pérez RA, Herrero MD, Leyte-Morales GE, Cupul-Magaña AL, Carriquiry-Beltrán JD (2005) Atlas de Corales Pétreos (Anthozoa: Scleractinia) del Pacífico Mexicano. CICESE, CONABIO, CONACYT, UABCS, U de G y UMar, MexicoGoogle Scholar
  57. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  58. Ridgway T (2002) Testing the applicability of molecular genetics markers to population analyses of Scleractinian corals. Symbiosis 33:243–261Google Scholar
  59. Ridgway T, Hoegh-Guldberg O, Ayre DJ (2001) Panmixia in Pocillopora verrucosa from South Africa. Mar Biol 139:175–181CrossRefGoogle Scholar
  60. Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Mol Ecol Notes 11:1177–1189CrossRefGoogle Scholar
  61. Rodríguez-Troncoso AP (2006) Ciclo reproductivo de tres especies de corales formadores de arrecife en Bahía La Entrega, Oaxaca, México. MSc. thesis, Universidad Autónoma de Baja California, p118Google Scholar
  62. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphisms analyses by the coalescent and other methods. Bioinformatics (Oxf) 19:2496–2497CrossRefGoogle Scholar
  63. Sagarin R, Carlsson J, Duval M, Freshwater W, Godfrey MH, Litaker W, Muñoz R, Noble R, Schultz T, Wynne B (2009) Bringing molecular tools into environmental resource management: Untangling the molecules to policy pathway. PloS Biol 7 [doi:  10.1371/journal.pbio.1000069]
  64. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  65. Sinniger F, Chevaldonne P, Pawlowski J (2007) Mitochondrial genome of Savalia savaglia (Cnidaria, Hexacorallia) and early metazoan phylogeny. J Mol Evol 64:196–203CrossRefPubMedGoogle Scholar
  66. Steiner SCC, Cortés J (1996) Spermatozoan ultrastructure of scleractinian corals from the eastern Pacific: Pocilloporidae and Agariciidae. Coral Reefs 15:143–147CrossRefGoogle Scholar
  67. Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:251–271Google Scholar
  68. Torres-Orozco E, Trasviña A, Muhlia-Melo A, Ortega-García S (2005) Dinámica de mesoescala y capturas de atún aleta amarilla en el Pacífico Mexicano. Cienc Mar 31:671–683Google Scholar
  69. Veron J (2000) Corals of the world. Austalian Institute of Marine Science, Townsville, QldGoogle Scholar
  70. Vizcaíno-Ochoa V (2003) Biología reproductiva de tres especies de corales formadores de arrecifes en Bahía de Banderas, México. M.Sc. thesis, Univesidad Aútonoma de Baja California, p73Google Scholar
  71. Vollmer SV, Palumbi SR (2007) Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: Implications for the recovery of endangered reefs. J Hered 98:40–50CrossRefPubMedGoogle Scholar
  72. White TJ, Bruns T, Lee S, Taylor WJ (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Snninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic Press Inc., New York, pp 315–322Google Scholar
  73. Yu JK, Wang HY, Lee SC, Dai CF (1999) Genetic structure of a scleractinian coral, Mycedium elephantotus, in Taiwan. Mar Biol 133:21–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • N. C. Saavedra-Sotelo
    • 1
  • L. E. Calderon-Aguilera
    • 2
  • H. Reyes-Bonilla
    • 3
  • R. A. López-Pérez
    • 4
  • P. Medina-Rosas
    • 5
  • A. Rocha-Olivares
    • 1
  1. 1.Molecular Ecology Laboratory, Biological Oceanography DepartmentCICESEEnsenadaMexico
  2. 2.Fisheries and Coastal Ecology Laboratory, Marine Ecology DepartmentCICESEEnsenadaMexico
  3. 3.Departamento de Biología MarinaUniversidad Autónoma de Baja California SurBaja California SurMexico
  4. 4.Resources InstituteUniversidad del MarPuerto ÁngelMexico
  5. 5.Sciences DepartmentCentro Universitario de la CostaPuerto VallartaMexico

Personalised recommendations