Skip to main content
Log in

Multimodale Komplexbehandlungen und Funktionstherapien für Kinder und Jugendliche mit Zerebralparese

Kritischer Review der Evidenzlage

Complex multimodal treatments and functional therapy for children and adolescents with cerebral palsy

A critical review of the evidence

  • Übersichten
  • Published:
Manuelle Medizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund und Ziel

Die infantile Zerebralparese (IZP) ist die häufigste Ursache für spastische Syndrome im Kindes- und Jugendalter. Sie beruht auf einer Schädigung des noch unreifen Zentralnervensystems. Die morphologische Schädigung ist nicht reversibel. Sekundäre funktionelle Veränderungen der Sensomotorik können jedoch durch funktionelle Behandlungen beeinflusst werden. Da die Problematik häufig komplex ist, wurden verschiedene funktionsorientierte multimodale Komplexbehandlungen für diese Patientengruppe entwickelt. In diesem Review soll die wissenschaftliche Grundlage für diese Behandlungsformen dargestellt und gewertet werden.

Methode

Es erfolgte eine Literaturrecherche in der US National Library of Medicine und eine Handsuche in der Zeitschrift Manuelle Medizin.

Ergebnisse

Insgesamt wurden 57 relevante Studien gefunden, davon 6 zu funktionsorientierten multimodalen Komplexbehandlungen. Die anderen Untersuchungen befassten sich mit in den Komplexbehandlungen durchgeführten Einzelbehandlungen. Für alle Verfahren konnten positive wissenschaftliche Evidenzen gefunden werden. Für die funktionsorientierten multimodalen Komplexbehandlungen lassen sich positive Effekte auf die motorische Entwicklung nachweisen.

Schlussfolgerungen

Funktionsorientierte multimodale Komplexbehandlungen und die in diesen Programmen angewandten Funktionstherapien fördern die motorische Entwicklung von Kindern und Jugendlichen mit IZP. Zum Beweis der Nachhaltigkeit dieser Effekte bedarf es noch weiterer wissenschaftlicher Untersuchungen.

Abstract

Background and objective

Infantile cerebral palsy (ICP) is the most common cause of spastic syndromes in children and adolescents. It is caused by damage to the developing central nervous system. The structural damage is irreversible, but secondary functional disturbance of the loco motor system can be influenced by treatment. Since the functional problem is very often complex, different function-orientated multimodal treatment concepts (FMTC) have been developed for this patient group. In this review, the scientific evidence for these complex treatment programs is presented and discussed.

Methods

A literature search was conducted in the US National Library of Medicine, and a manual search in the Manuelle Medizin journal.

Results

A total of 57 relevant studies were found, of which 6 addressed FMTC. The other studies examined individual treatments frequently used in FMTC. Positive scientific evidence was found for all treatments. FMTC positively influenced patients’ motoric development.

Conclusion

FMTC and the functional treatments used in these programs positively influence development of the locomotor system in children and adolescents with ICP. Further studies are needed to assess the long-term sustainability of these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Cans C, SCPE (2000) Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and register. Dev Med Child Neurol 42:816–824

    Article  Google Scholar 

  2. Russell DJ, Rosenbaum P, Avery L, Lane M (2002) Gross motor function measure (GMFM) user’s manuel. Mac Keith Press, London

    Google Scholar 

  3. http://www.amm-rheintalklinik.de/. Zugegriffen: 30. Mai 2015

  4. www.kmt-hamm.de. Zugegriffen: 30. Mai 2015

  5. http://www.reha.lviv.ua.. Zugegriffen: 30. Mai 2015

  6. Haynes RB (2006) Of studies, summaries, synopses, and systems: the “5S” evolution of information services for evidence-based healthcare decisions. ACP J Club 145:A–8

  7. Koziavkin VI, Voloshin TB, Gordievich MS, Kachmar OA (2012) Changes of motor function in patients with cerebral palsy during the treatment using the intensive neurophysiological rehabilitation system. Zh Nevropatol Psikhiatr Im S S Korsakova 112:14–17

    CAS  Google Scholar 

  8. Lohse-Busch H, Riedel M, Falland R, Sailer-Kramer B, Reime U, Krämer M (2003) Manualmedizinisch-physiotherapeutische Komplexbehandlung bei Kindern mit infantiler Zerebralparese. Was lässt sich begründen? Was lässt sich messen. Man Med 41:279–287

    Article  Google Scholar 

  9. Riedel M, Falland R, Sailer-Kramer B, Lohse-Busch H (2001) Komplexbehandlung mit Manueller Medizin und Physiotherapie bei zerebral bewegungsgestörten Kindern. Man Med 39:72–78

    Article  Google Scholar 

  10. Lohse-Busch H, Kraemer M, Reime U, Marbler X, Möwis U (2010) Veränderungen der Gehfähigkeit spastisch bewegungsgestörter Kinder und Jugendlicher Zweiwöchige physikalisch-medizinische Komplexbehandlung. Man Med 48:107–111. https://doi.org/10.1007/s00337-010-0744-4

    Article  Google Scholar 

  11. Bücher JKL. Die Wirksamkeit eines multimodalen Therapiekonzeptes auf manualmedizinischer Basis auf die grobmotorische Funktion im zeitlichen Verlauf bei Patienten mit Infantiler Cerebralparese. Promotion an der Medizinischen Fakultät der Westfälischen Wilhelms-Universität Münster, 2006

  12. Stark C, Nikopoulou-Smyrni P, Stabrey A, Semler O, Schoenau E (2010) Effect of a new physiotherapy concept on bone mineral density, muscle force and gross motor function in children with bilateral cerebral palsy. J Musculoskelet Neuronal Interact 10(2):151–158

    CAS  PubMed  Google Scholar 

  13. Coenen W (2001) Komplexbehandlung bei zerebral bewegungsgestörten Kindern. Man Med 39(2):72–77

    Article  Google Scholar 

  14. Lohse-Busch H, Kraemer M (1996) Möglichkeiten der Rehabilitation von zerebralparetisch bedingten Bewegungsstörungen bei Kindern mit den Mitteln der Manuellen Medizin. Man Med 34(4):171–175

    Google Scholar 

  15. Beyer L, Geipel E, Seifert I, Alt M, Bauer G, Harke G, Krocker B, Buchmann J (2012) Manuelle Medizin im Säuglings- und Kindesalter. ÄMM/BAOM, Berlin

    Google Scholar 

  16. Duncan B, McDounough-Means S, Worden K, Schnyer R, Andrews J, Meaney FJ (2008) Effectiveness of osteopathy in the cranial fields and myofascial release versus acupuncture as complementary treatment for children with spastic cerebral palsy: a pilot study. J Am Osteopath Assoc 108:559–570

    PubMed  Google Scholar 

  17. Duncan B, Barton L, Edmonds D, Blashill BM (2004) Parental perception of the therapeutic effect from osteopathic manipulation or acupuncture in children with spastic cerebral palsy. Clin Pediatr (Phila) 43:349–353

    Article  CAS  Google Scholar 

  18. Wyatt K, Edwards V, Franck L, Britten N, Siobhan C, Maddick A, Logan S (2011) Cranial osteopathy for children with cerebral palsy: a randomised controlled trial. Arch Dis Child 96:505–512

    Article  Google Scholar 

  19. Palmer FB, Shapiro BK, Wachtel RC, Allan MC, Hiller JE, Harrymann SE, Mosher BS, Meinert CL, Capute AJ (1988) The effects of physiotherapie on cerebral palsy. A controlled in infants with spastic diplegia. N Engl J Med 318:803–808

    Article  CAS  Google Scholar 

  20. Sommerfeld D, Fraser BA, Hensine RN, Beresford CV (1981) Evaluation of physical therapy service for severely mentally impaired students with cerebral palsy. Phys Ther 61:338–344

    Article  CAS  Google Scholar 

  21. Bower E, Mc Lellan DL, Arney J, Campbell MJ (1996) A randomized controlled trial of different intensities of physiotherapy and different goal setting procedures in 44 children with cerebral palsy. Dev Med Child Neurol 38:226–237

    Article  CAS  Google Scholar 

  22. Song CS (2014) Effects of task-oriented approach on affected arm function in children with spastic hemiplegia due to cerebral palsy. J Phys Ther Sci 26(6):797–800. https://doi.org/10.1589/jpts.26.797

    Article  PubMed  PubMed Central  Google Scholar 

  23. Franki I, Van den Broeck C, De Cat J, Tijhuis W, Molenaers G, Vanderstraeten G, Desloovere K (2014) A randomized, single-blind cross-over design evaluating the effectiveness of an individually defined, targeted physical therapy approach in treatment of children with cerebral palsy. Clin Rehabil 28(10):1039–1052. https://doi.org/10.1177/0269215514544984

    Article  PubMed  Google Scholar 

  24. Simsek TT, Türkücüoğlu B, Cokal N, Üstünbas G, Simsel IE (2011) The effects of kinesio taping on sitting posture, functional independence and gross motor function in children with cerebral palsy. Disabil Rehabil 33:2058–2063

    Article  Google Scholar 

  25. Footer CB (2006) The effects of therapeutic taping on gross motor function in children with cerebral palsy. Pediatr Phys Ther 18:245–252

    Article  Google Scholar 

  26. Kara KO, Atasavun Uysal S, Turker D, Karayazgan S, Gunel MK, Baltaci G (2015) The effects of kinesio taping on body functions and activity in unilateral spastic cerebral palsy: a single-blind randomized controlled trial. Dev Med Child Neurol 57(1):81–88. https://doi.org/10.1111/dmcn.12583

    Article  Google Scholar 

  27. Dursun E, Dursun N, Alican D (2004) Effects of biofeedback treatment on gait in children with cerebral palsy. Disabil Rehabil 26:116–120

    Article  Google Scholar 

  28. Brandt S, Lønstrup HV, Marner T, Rump KJ, Selmar P, Schack LK, d’Avignon M, Norén L, Arman T (1980) Prevention of cerebral palsy in motor risk infants by treatment ad modum Vojta. A controlled study. Acta Paediatr Scand 69(3):283–286

    Article  CAS  Google Scholar 

  29. D’Avignon M, Norén L, Arman T (1981) Early physiotherapy ad modum Vojta or Bobath in infants with suspected neuromotor disturbance. Neuropediatrics 12:232–241

    Article  Google Scholar 

  30. Mayo NE (1991) The effect of physical therapy for children with motor delay and cerebral palsy. A randomized controlled trial. Am J Phys Med Rehabil 70:258–267

    Article  CAS  Google Scholar 

  31. El-Basatiny HM, Abdel-Aziem AA (2015) Effect of backward walking training on postural balance in children with hemiparetic cerebral palsy: a randomized controlled study. Clin Rehabil 29(5):457–467. https://doi.org/10.1177/0269215514547654

    Article  PubMed  Google Scholar 

  32. Law M, Russell D, Pollock N, Rosenbaum P, Walter S, King G (1997) A comparison of intensive neurodevelopmental therapy plus casting and a regular occupational therapy program for children with cerebral palsy. Dev Med Child Neurol 39(10):664–670

    Article  CAS  Google Scholar 

  33. Mattern-Baxter K, McNeil S, Mansoor JK (2013) Effects of home-based locomotor treadmill training on gross motor function in young children with cerebral palsy: a quasi-randomized controlled trial. Arch Phys Med Rehabil 94(11):2061–2067. https://doi.org/10.1016/j.apmr.2013.05.012

    Article  PubMed  Google Scholar 

  34. Gharib NM, El-Maksoud GM, Rezk-Allah SS (2011) Efficacy of gait trainer as an adjunct to traditional physiotherapy on walking performance in hemiparetic cerebral palsied children: a randomized conrolled trial. Clin Rehabil 25:924–934

    Article  Google Scholar 

  35. Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, Werner C, Bisoffi G, Geroin C, Munari D (2011) Improved gait after repetetive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil 90:137–149

    Article  Google Scholar 

  36. Johnston TE, Watson KE, Ross SA, Gates PE, Gaughan JP, Lauer RT, Tucker CA, Engsberg JR (2011) Effects of a supported speed treadmill training exercise program on impairment and function for children with cerbral palsy. Dev Med Child Neurol 53:742–750

    Article  Google Scholar 

  37. Ledebt A, Becher J, Kapper J, Rozendaalr RM, Bakker R, Leenders IC, Savelsbergh GJ (2005) Balance training with visual feedback in children with hemiplegic cerebral palsy: effect on stance and gait. Motor Control 9:459–468

    Article  Google Scholar 

  38. Abd El-Kafy EM, El-Basatiny HM (2014) Effect of postural balance training on gait parameters in children with cerebral palsy. Am J Phys Med Rehabil 93(11):938–947. https://doi.org/10.1097/PHM.0000000000000109

    Article  PubMed  Google Scholar 

  39. El-Shamy SM, Abd El Kafy EM (2014) Effect of balance training on postural balance control and risk of fall in children with diplegic cerebral palsy. Disabil Rehabil 36(14):1176–1183. https://doi.org/10.3109/09638288.2013.833312

    Article  PubMed  Google Scholar 

  40. Willerslev-Olsen M, Petersen TH, Farmer SF, Nielsen JB (2015) Gait training facilitates central drive to ankle dorsiflexors in children with cerebral palsy. Brain 138(Pt 3):589–603. https://doi.org/10.1093/brain/awu399

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grecco LA, Zanon N, Sampaio LM, Oliveira CS (2013) A comparison of treadmill training and overground walking in ambulant children with cerebral palsy: randomized controlled clinical trial. Clin Rehabil 27(8):686–696. https://doi.org/10.1177/0269215513476721

    Article  PubMed  Google Scholar 

  42. Dodd KJ, Foley S (2007) Partial body-weight-supported treadmill training can improve walking in children with cerebral palsy: a clinical controlled trial. Dev Med Child Neurol 49:101–105

    Article  Google Scholar 

  43. Schroeder AS, Homburg M, Warken B, Auffermann H, Koerte I, Berweck S, Jahn K, Heinen F, Borggraefe I (2014) Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after robot-enhanced repetitive treadmill therapy. Eur J Paediatr Neurol 18(4):502–510. https://doi.org/10.1016/j.ejpn.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  44. Su IY, Chung KK, Chow DH (2013) Treadmill training with partial body weight support compared with conventional gait training for low-functioning children and adolescents with nonspastic cerebral palsy: a two-period crossover study. Prosthet Orthot Int 37(6):445–453. https://doi.org/10.1177/0309364613476532

    Article  PubMed  Google Scholar 

  45. Swe NN, Sendhilnnathan S, van Den Berg M, Barr C (2015) Over ground walking and body weight supported walking improve mobility equally in cerebral palsy: a randomised controlled trial. Clin Rehabil. https://doi.org/10.1177/0269215514566249

    Article  PubMed  Google Scholar 

  46. Willoughby KL, Dodd KJ, Shields N, Foley S (2010) Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: a randomized controlled trial. Arch Phys Med Rehabil 91(3):333–339. https://doi.org/10.1016/j.apmr.2009.10.029

    Article  PubMed  Google Scholar 

  47. Scholtes VA, Becher JG, Comuth A, Dekkers H, Van Dijk L, Dallmeijer AJ (2010) Effectivness of functional progressive resistance exercise training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol 52:e107–e113

    Article  Google Scholar 

  48. Unger M, Faure M, Frieg A (2006) Strength training in adolescent learners with cerebral palsy: a randomized trial. Clin Rehabil 20:469–477

    Article  Google Scholar 

  49. Taylor NF, Dodd KJ, Baker RJ, Willoughby K, Thomason P, Graham HK (2013) Progressive resistance training and mobility-related function in young people with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol 55(9):806–812. https://doi.org/10.1111/dmcn.12190

    Article  PubMed  Google Scholar 

  50. Salem Y, Godwin EM (2009) Effects of task-orientated training on mobility function in children with cerebral palsy. NeuroRehabilitation 24:307–313

    PubMed  Google Scholar 

  51. Lee JH, Sung IY, Yoo JY (2008) Therapeutic effects of strengthening exercise on gait function of cerebral palsy. Disabil Rehabil 30:1439–1444

    Article  Google Scholar 

  52. Liao HF, Liu YC, Liu WY, Lin YT (2007) Effectivenes of loaded sit-to-stand resistance exercise for children with mild spastic diplegia: a randimized clinical trial. Arch Phys Med Rehabil 88:25–31

    Article  Google Scholar 

  53. Jung JW, Her JG, Ko J (2013) Effect of strength training of ankle plantarflexors on selective voluntary motor control, gait parameters, and gross motor function of children with cerebral palsy. J Phys Ther Sci 25(10):1259–1263. https://doi.org/10.1589/jpts.25.1259

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dodd KJ, Taylor NF, Graham HK (2003) A randomized clinical trial of strength training in young people with cerebral palsy. Dev Med Child Neurol 45(10):652–657

    Article  Google Scholar 

  55. Dodd KJ, Taylor NF, Graham HK (2004) Strength training can have unexpected effects on the self-concept of children with cerebral palsy. Pediatr Phys Ther 16(2):99–105

    Article  Google Scholar 

  56. Lee DR, Kim YH, Kim DA, Lee JA, Hwang PW, Lee MJ, You SH (2014) Innovative strength training-induced neuroplasticity and increased muscle size and strength in children with spastic cerebral palsy: an experimenter-blind case study – three-month follow-up. NeuroRehabilitation 35(1):131–136. https://doi.org/10.3233/NRE-131036

    Article  PubMed  Google Scholar 

  57. Lee JA, You JH, Kim DA, Lee MJ, Hwang PW, Lee NG, Park JJ, Lee DR, Kim HK (2013) Effects of functional movement strength training on strength, muscle size, kinematics, and motor function in cerebral palsy: a 3-month follow-up. NeuroRehabilitation 32(2):287–295. https://doi.org/10.3233/NRE-130846

    Article  PubMed  Google Scholar 

  58. Van den Berg-Emons RJ, Van Baak MA, Speth L, Saris WH (1998) Physical training of school children with spastic cerebral palsy: effects on daily activity, fat mass and fitness. Int J Rehabil Res 21:179–194

    Article  Google Scholar 

  59. Fowler EG, Knutson LM, DeMuth SK, Siebert KL, Simms VD, Sugi MH, Souza RB, Karim R, Azen SP (2010) Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial. Phys Ther 90:367–381

    Article  Google Scholar 

  60. Demuth SK, Knutson LM, Fowler EG (2012) The PEDALS stationary cycling intervention and health-related quality of life in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol 54(7):654–661. https://doi.org/10.1111/j.1469-8749.2012.04321.x

    Article  PubMed  Google Scholar 

  61. Van Wely L, Balemans AC, Becher JG, Dallmeijer AJ (2014) Physical activity stimulation program for children with cerebral palsy did not improve physical activity: a randomised trial. J Physiother 60(1):40–49. https://doi.org/10.1016/j.jphys.2013.12.007

    Article  PubMed  Google Scholar 

  62. Van Wely L, Balemans AC, Becher JG, Dallmeijer AJ (2014) The effectiveness of a physical activity stimulation programme for children with cerebral palsy on social participation, self-perception and quality of life: a randomized controlled trial. Clin Rehabil 28(10):972–982. https://doi.org/10.1177/0269215513500971

    Article  PubMed  Google Scholar 

  63. Nsenga AL, Shephard RJ, Ahmaidi S (2013) Aerobic training in children with cerebral palsy. Int J Sports Med 34(6):533–537. https://doi.org/10.1055/s-0032-1321803

    Article  CAS  PubMed  Google Scholar 

  64. Fragala-Pinkham MA, Smith HJ, Lombard KA, Barlow C, O’Neil ME (2014) Aquatic aerobic exercise for children with cerebral palsy: a pilot intervention study. Physiother Theory Pract 30(2):69–78. https://doi.org/10.3109/09593985.2013.825825

    Article  PubMed  Google Scholar 

  65. Lai CJ, Liu WY, Yang TF, Chen CL, Wu CY, Chan RC (2015) Pediatric aquatic therapy on motor function and enjoyment in children diagnosed with cerebral palsy of various motor severities. J Child Neurol 30(2):200–208. https://doi.org/10.1177/0883073814535491

    Article  PubMed  Google Scholar 

  66. Lorentzen J, Greve LZ, Kliim-Due M, Rasmussen B, Bilde PE, Nielsen JB (2015) Twenty weeks of home-based interactive training of children with cerebral palsy improves functional abilities. BMC Neurol 15:75. https://doi.org/10.1186/s12883-015-0334-0

    Article  PubMed  PubMed Central  Google Scholar 

  67. Holmström L, Vollmer B, Tedroff K, Islam M, Persson JKE, Kits A, Forssberg H, Eliasson AC (2010) Hand function in relation to brain lesions and corticomotor-projection pattern in children with unilateral cerebral palsy. Dev Med Child Neurol 52:145–152

    Article  Google Scholar 

  68. Walther M, Juenger H, Kuhnke N, Wilke M, Brodbeck V, Berweck S, Staudt M, Mall V (2009) Motor cortex plasticity in ischemic perinatal stroke: a transcranial magnetic stimulation and functional MRI study. Pediatr Neurol 41:171–178

    Article  Google Scholar 

  69. Sutcliffe TL, Gaetz WC, Logan WJ, Cheyene DO, Fehlings DL (2007) Cortical reorganization after constraint-induced movement therapy in pediatric cerebral palsy. J Child Neurol 22:1281–1287

    Article  Google Scholar 

  70. Juenger H, Lindner-Lucht M, Walther M, Berweck S, Mall V, Staudt M (2007) Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an fMRI study. Neuropediatrics 38:130–136

    Article  CAS  Google Scholar 

  71. Wolff HD (1996) Neurophysiologische Aspekte des Bewegungssystems, 3. Aufl. Springer, Berlin

    Book  Google Scholar 

  72. Laube W (2013) Muskelaktivität: Prägung des ZNS und endokrine Funktion. Man Med 51:141–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Niemier.

Ethics declarations

Interessenkonflikt

K. Niemier gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niemier, K. Multimodale Komplexbehandlungen und Funktionstherapien für Kinder und Jugendliche mit Zerebralparese. Manuelle Medizin 56, 147–157 (2018). https://doi.org/10.1007/s00337-018-0382-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00337-018-0382-9

Schlüsselwörter

Keywords

Navigation