Mammalian Genome

, Volume 29, Issue 3–4, pp 281–298 | Cite as

Loss of the zona pellucida-binding protein 2 (Zpbp2) gene in mice impacts airway hypersensitivity and lung lipid metabolism in a sex-dependent fashion

  • Cynthia Kanagaratham
  • Victoria Chiwara
  • Bianca Ho
  • Sanny Moussette
  • Mina Youssef
  • David Venuto
  • Lucie Jeannotte
  • Guillaume Bourque
  • Juan Bautista de Sanctis
  • Danuta Radzioch
  • Anna K. Naumova


The human chromosomal region 17q12–q21 is one of the best replicated genome-wide association study loci for childhood asthma. The associated SNPs span a large genomic interval that includes several protein-coding genes. Here, we tested the hypothesis that the zona pellucida-binding protein 2 (ZPBP2) gene residing in this region contributes to asthma pathogenesis using a mouse model. We tested the lung phenotypes of knock-out (KO) mice that carry a deletion of the Zpbp2 gene. The deletion attenuated airway hypersensitivity (AHR) in female, but not male, mice in the absence of allergic sensitization. Analysis of the lipid profiles of their lungs showed that female, but not male, KO mice had significantly lower levels of sphingosine-1-phosphate (S1P), very long-chain ceramides (VLCCs), and higher levels of long-chain ceramides compared to wild-type controls. Furthermore, in females, lung resistance following methacholine challenge correlated with lung S1P levels (Pearson correlation coefficient 0.57) suggesting a link between reduced AHR in KO females, Zpbp2 deletion, and S1P level regulation. In livers, spleens and blood plasma, however, VLCC, S1P, and sphingosine levels were reduced in both KO females and males. We also find that the Zpbp2 deletion was associated with gain of methylation in the adjacent DNA regions. Thus, we demonstrate that the mouse ortholog of ZPBP2 has a role in controlling AHR in female mice. Our data also suggest that Zpbp2 may act through regulation of ceramide metabolism. These findings highlight the importance of phospholipid metabolism for sexual dimorphism in AHR.



The authors are grateful to Pamela Stroud, Amanda Baumholtz, and Wei Cui for technical assistance and Drs. Danielle Malo and Aimee Ryan for helpful discussion. This work was supported by funds from the Canadian Institutes of Health Research (to AKN and DR) and the Research Institute of the McGill University Health Centre (to AKN). DR is a member of Infectious Diseases and Immunity in Global Health Program, (IDIGH). VC has been a recipient of the Department of Human Genetics scholarship. CK has been a recipient of the Banting and Best Doctoral Training Award from CIHR.

Author contributions

CK contributed to study design, data collection, statistical analysis, and writing of the manuscript. VC contributed to data collection, data analysis, and writing the manuscript. MY, BH, and SM contributed to data collection and analysis. DV contributed to data analysis, interpretation and writing of the manuscript. LJ contributed to data collection. GB contributed to data analysis and interpretation. JBdS contributed to data collection and data analysis. DR contributed to study design, data interpretation and edited the manuscript. AKN contributed to study design, data collection, analysis, data interpretation, and wrote the manuscript. All authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no competing interest.

Supplementary material

335_2018_9743_MOESM1_ESM.docx (849 kb)
Supplementary material 1 (DOCX 848 KB)


  1. Acevedo N, Reinius LE, Greco D, Gref A, Orsmark-Pietras C, Persson H, Pershagen G, Hedlin G, Melen E, Scheynius A, Kere J, Soderhall C (2015) Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus. Hum Mol Genet 24:875–890CrossRefPubMedGoogle Scholar
  2. Ackerman KG, Huang H, Grasemann H, Puma C, Singer JB, Hill AE, Lander E, Nadeau JH, Churchill GA, Drazen JM, Beier DR (2005) Interacting genetic loci cause airway hyper responsiveness. Physiol Genom 21:105–111CrossRefGoogle Scholar
  3. Akiyama TE, Nicol CJ, Fievet C, Staels B, Ward JM, Auwerx J, Lee SS, Gonzalez FJ, Peters JM (2001) Peroxisome proliferator-activated receptor-alpha regulates lipid homeostasis, but is not associated with obesity: studies with congenic mouse lines. J Biol Chem 276:39088–39093CrossRefPubMedGoogle Scholar
  4. Al Tuwaijri A, Gagne-Ouellet V, Madore AM, Laprise C, Naumova AK (2016) Local genotype influences DNA methylation at two asthma-associated regions, 5q31 and 17q21, in a founder effect population. J Med Genet 53:232–241CrossRefPubMedGoogle Scholar
  5. Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ (1998) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 273:5678–5684CrossRefPubMedGoogle Scholar
  6. Ayabe T, Fukami M, Ogata T, Kawamura T, Urakami T, Kikuchi N, Yokota I, Ihara K, Takemoto K, Mukai T, Nishii A, Kikuchi T, Mori T, Shimura N, Sasaki G, Kizu R, Takubo N, Soneda S, Fujisawa T, Takaya R, Kizaki Z, Kanzaki S, Hanaki K, Matsuura N, Kasahara Y, Kosaka K, Takahashi T, Minamitani K, Matsuo S, Mochizuki H, Kobayashi K, Koike A, Horikawa R, Teno S, Tsubouchi K, Mochizuki T, Igarashi Y, Amemiya S, Sugihara S (2016) Variants associated with autoimmune Type 1 diabetes in Japanese children: implications for age-specific effects of cis-regulatory haplotypes at 17q12-q21. Diabet Med 33:1717–1722CrossRefPubMedGoogle Scholar
  7. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P, Behrens TW, Martin J, Fairfax BP, Knight JC, Chen L, Replogle J, Syvanen AC, Ronnblom L, Graham RR, Wither JE, Rioux JD, Alarcon-Riquelme ME, Vyse TJ (2015) Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 47:1457–1464CrossRefPubMedPubMedCentralGoogle Scholar
  9. Berlivet S, Moussette S, Ouimet M, Verlaan DJ, Koka V, Al Tuwaijri A, Kwan T, Sinnett D, Pastinen T, Naumova AK (2012) Interaction between genetic and epigenetic variation defines gene expression patterns at the asthma-associated locus 17q12-q21 in lymphoblastoid cell lines. Hum Genet 131:1161–1171CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bouzigon E, Corda E, Aschard H, Dizier MH, Boland A, Bousquet J, Chateigner N, Gormand F, Just J, Le Moual N, Scheinmann P, Siroux V, Vervloet D, Zelenika D, Pin I, Kauffmann F, Lathrop M, Demenais F (2008) Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 359:1985–1994CrossRefPubMedGoogle Scholar
  11. Camateros P, Marino R, Fortin A, Martin JG, Skamene E, Sladek R, Radzioch D (2009) Identification of novel chromosomal regions associated with airway hyperresponsiveness in recombinant congenic strains of mice. Mamm Genome 21:28–38CrossRefPubMedGoogle Scholar
  12. Carreras-Sureda A, Rubio-Moscardo F, Olvera A, Argilaguet J, Kiefer K, Mothe B, Meyerhans A, Brander C, Vicente R (2016) Lymphocyte activation dynamics is shaped by hereditary components at chromosome region 17q12-q21. PLoS ONE 11:e0166414CrossRefPubMedPubMedCentralGoogle Scholar
  13. Che W, Manetsch M, Quante T, Rahman MM, Patel BS, Ge Q, Ammit AJ (2012) Sphingosine 1-phosphate induces MKP-1 expression via p38 MAPK- and CREB-mediated pathways in airway smooth muscle cells. Biochim Biophys Acta 1823:1658–1665CrossRefPubMedGoogle Scholar
  14. Chiba Y, Takeuchi H, Sakai H, Misawa M (2010) SKI-II, an inhibitor of sphingosine kinase, ameliorates antigen-induced bronchial smooth muscle hyperresponsiveness, but not airway inflammation, in mice. J Pharmacol Sci 114:304–310CrossRefPubMedGoogle Scholar
  15. Chiba Y, Takeuchi H, Sakai H, Misawa M (2011) Sphingosine-1-phosphate augments agonist-mediated contraction in the bronchial smooth muscles of mice. Pharmacol Rep 63:544–547CrossRefPubMedGoogle Scholar
  16. Chu AY, Deng X, Fisher VA, Drong A, Zhang Y, Feitosa MF, Liu CT, Weeks O, Choh AC, Duan Q, Dyer TD, Eicher JD, Guo X, Heard-Costa NL, Kacprowski T, Kent JW Jr, Lange LA, Liu X, Lohman K, Lu L, Mahajan A, O’Connell JR, Parihar A, Peralta JM, Smith AV, Zhang Y, Homuth G, Kissebah AH, Kullberg J, Laqua R, Launer LJ, Nauck M, Olivier M, Peyser PA, Terry JG, Wojczynski MK, Yao J, Bielak LF, Blangero J, Borecki IB, Bowden DW, Carr JJ, Czerwinski SA, Ding J, Friedrich N, Gudnason V, Harris TB, Ingelsson E, Johnson AD, Kardia SL, Langefeld CD, Lind L, Liu Y, Mitchell BD, Morris AP, Mosley TH Jr, Rotter JI, Shuldiner AR, Towne B, Volzke H, Wallaschofski H, Wilson JG, Allison M, Lindgren CM, Goessling W, Cupples LA, Steinhauser ML, Fox CS (2017) Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nat Genet 49:125–130CrossRefPubMedGoogle Scholar
  17. Das S, Miller M, Beppu AK, Mueller J, McGeough MD, Vuong C, Karta MR, Rosenthal P, Chouiali F, Doherty TA, Kurten RC, Hamid Q, Hoffman HM, Broide DH (2016) GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc Natl Acad Sci USA 113:13132–13137CrossRefPubMedPubMedCentralGoogle Scholar
  18. Espaillat MP, Kew RR, Obeid LM (2017) Sphingolipids in neutrophil function and inflammatory responses: mechanisms and implications for intestinal immunity and inflammation in ulcerative colitis. Adv Biol Regul 63:140–155CrossRefPubMedGoogle Scholar
  19. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  20. Ge B, Pokholok DK, Kwan T, Grundberg E, Morcos L, Verlaan DJ, Le J, Koka V, Lam KC, Gagne V, Dias J, Hoberman R, Montpetit A, Joly MM, Harvey EJ, Sinnett D, Beaulieu P, Hamon R, Graziani A, Dewar K, Harmsen E, Majewski J, Goring HH, Naumova AK, Blanchette M, Gunderson KL, Pastinen T (2009) Global patterns of cis variation in human cells revealed by high-density allelic expression analysis. Nat Genet 41:1216–1222CrossRefPubMedGoogle Scholar
  21. Granell R, Henderson AJ, Timpson N, St Pourcain B, Kemp JP, Ring SM, Ho K, Montgomery SB, Dermitzakis ET, Evans DM, Sterne JA (2013) Examination of the relationship between variation at 17q21 and childhood wheeze phenotypes. J Allergy Clin Immunol 131:685–694CrossRefPubMedGoogle Scholar
  22. Guilbault C, De Sanctis JB, Wojewodka G, Saeed Z, Lachance C, Skinner TA, Vilela RM, Kubow S, Lands LC, Hajduch M, Matouk E, Radzioch D (2008) Fenretinide corrects newly found ceramide deficiency in cystic fibrosis. Am J Respir Cell Mol Biol 38:47–56CrossRefPubMedGoogle Scholar
  23. Han DC, Guan JL (1999) Association of focal adhesion kinase with Grb7 and its role in cell migration. J Biol Chem 274:24425–24430CrossRefPubMedGoogle Scholar
  24. Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E, Zaugg C, Pei H, Geissmann F, Ley K, Hedrick CC (2012) NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 110:416–427CrossRefPubMedGoogle Scholar
  25. Hao K, Bosse Y, Nickle DC, Pare PD, Postma DS, Laviolette M, Sandford A, Hackett TL, Daley D, Hogg JC, Elliott WM, Couture C, Lamontagne M, Brandsma CA, van den Berge M, Koppelman G, Reicin AS, Nicholson DW, Malkov V, Derry JM, Suver C, Tsou JA, Kulkarni A, Zhang C, Vessey R, Opiteck GJ, Curtis SP, Timens W, Sin DD (2012) Lung eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet 8:e1003029CrossRefPubMedPubMedCentralGoogle Scholar
  26. He B, Chen C, Teng L, Tan K (2014) Global view of enhancer-promoter interactome in human cells. Proc Natl Acad Sci USA 111:E2191–E2199CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hedges LV (1981) Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Behav Stat 6:107–128CrossRefGoogle Scholar
  28. Hirschfield GM, Siminovitch KA (2015) Genetics in PBC: what do the “risk genes” teach us? Clin Rev Allergy Immunol 48:176–181CrossRefPubMedGoogle Scholar
  29. Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428CrossRefPubMedPubMedCentralGoogle Scholar
  30. Holmes ML, Huntington ND, Thong RP, Brady J, Hayakawa Y, Andoniou CE, Fleming P, Shi W, Smyth GK, Degli-Esposti MA, Belz GT, Kallies A, Carotta S, Smyth MJ, Nutt SL (2014) Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO J 33:2721–2734CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hrdlickova B, Holla LI (2011) Relationship between the 17q21 locus and adult asthma in a Czech population. Hum Immunol 72:921–925CrossRefPubMedGoogle Scholar
  32. Jahner D, Jaenisch R (1985) Retrovirus-induced de novo methylation of flanking host sequences correlates with gene inactivity. Nature 315:594–597CrossRefPubMedGoogle Scholar
  33. Kanagaratham C, Kalivodova A, Najdekr L, Friedecky D, Adam T, Hajduch M, De Sanctis JB, Radzioch D (2014) Fenretinide prevents inflammation and airway hyperresponsiveness in a mouse model of allergic asthma. Am J Respir Cell Mol Biol 51:783–792CrossRefPubMedGoogle Scholar
  34. Kanagaratham C, Camateros P, Ren J, Sladek R, Vidal SM, Radzioch D (2017) Mouse chromosome 4 is associated with the baseline and allergic IgE phenotypes. G3 (Bethesda, Md) 7:2559–2564CrossRefGoogle Scholar
  35. Kessova IG, Cederbaum AI (2007) Mitochondrial alterations in livers of Sod1−/− mice fed alcohol. Free Rad Biol Med 42:1470–1480CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kurakula K, Vos M, Logiantara A, Roelofs JJ, Nieuwenhuis MA, Koppelman GH, Postma DS, van Rijt LS, de Vries CJ (2015) Nuclear receptor Nur77 attenuates airway inflammation in mice by suppressing NF-kappaB activity in lung epithelial cells. J Immunol 195:1388–1398CrossRefPubMedGoogle Scholar
  37. Langner CA, Birkenmeier EH, Roth KA, Bronson RT, Gordon JI (1991) Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld) mutation. J Biol Chem 266:11955–11964PubMedGoogle Scholar
  38. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez-Salguero PM, Westphal H, Gonzalez FJ (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15:3012–3022CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lin YN, Roy A, Yan W, Burns KH, Matzuk MM (2007) Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol 27:6794–6805CrossRefPubMedPubMedCentralGoogle Scholar
  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif) 25:402–408CrossRefGoogle Scholar
  41. Miller M, Rosenthal P, Beppu A, Mueller JL, Hoffman HM, Tam AB, Doherty TA, McGeough MD, Pena CA, Suzukawa M, Niwa M, Broide DH (2014) ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. J Immunol 192:3475–3487CrossRefPubMedPubMedCentralGoogle Scholar
  42. Miller M, Rosenthal P, Beppu A, Gordillo R, Broide DH (2017a) Oroscomucoid like protein 3 (ORMDL3) transgenic mice have reduced levels of sphingolipids including sphingosine-1-phosphate and ceramide. J Allergy Clin Immunol 139:1373–1376.e1374CrossRefPubMedGoogle Scholar
  43. Miller M, Tam AB, Mueller JL, Rosenthal P, Beppu A, Gordillo R, McGeough MD, Vuong C, Doherty TA, Hoffman HM, Niwa M, Broide DH (2017b) Cutting edge: targeting epithelial ORMDL3 increases, rather than reduces, airway responsiveness and is associated with increased sphingosine-1-phosphate. J Immunol 198:3017–3022CrossRefPubMedGoogle Scholar
  44. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufe A, Rietschel E, Heinzmann A, Simma B, Frischer T, Willis-Owen SA, Wong KC, Illig T, Vogelberg C, Weiland SK, von Mutius E, Abecasis GR, Farrall M, Gut IG, Lathrop GM, Cookson WO (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448:470–473CrossRefPubMedGoogle Scholar
  45. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson WO (2010) A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 363:1211–1221CrossRefPubMedPubMedCentralGoogle Scholar
  46. Moisan J, Thuraisingam T, Henault J, De Sanctis J, Radzioch D (2006) Role of SLC11A1 (formerly NRAMP1) in regulation of signal transduction induced by Toll-like receptor 7 ligands. FEMS Immunol Med Microbiol 47:138–147CrossRefPubMedGoogle Scholar
  47. Moussette S, Al Tuwaijri A, Kohan-Ghadr HR, Elzein S, Farias R, Berube J, Ho B, Laprise C, Goodyer CG, Rousseau S, Naumova AK (2017) Role of DNA methylation in expression control of the IKZF3-GSDMA region in human epithelial cells. PLoS ONE 12:e0172707CrossRefPubMedPubMedCentralGoogle Scholar
  48. Naumova AK, Al Tuwaijri A, Morin A, Vaillancout VT, Madore AM, Berlivet S, Kohan-Ghadr HR, Moussette S, Laprise C (2013) Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. Hum Genet 132:811–822CrossRefPubMedGoogle Scholar
  49. Ono JG, Worgall TS, Worgall S (2015) Airway reactivity and sphingolipids-implications for childhood asthma. Mol Cell Pediatr 2:13CrossRefPubMedPubMedCentralGoogle Scholar
  50. Oyeniran C, Sturgill JL, Hait NC, Huang WC, Avni D, Maceyka M, Newton J, Allegood JC, Montpetit A, Conrad DH, Milstien S, Spiegel S (2015) Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J Allergy Clin Immunol 136:1035–1046.e1036CrossRefPubMedPubMedCentralGoogle Scholar
  51. Parker AR, Ayars AG, Altman MC, Henderson WR Jr (2016) Lipid mediators in aspirin-exacerbated respiratory disease. Immunol Allergy Clin N Am 36:749–763CrossRefGoogle Scholar
  52. Perez-Sieira S, Martinez G, Porteiro B, Lopez M, Vidal A, Nogueiras R, Dieguez C (2013) Female Nur77-deficient mice show increased susceptibility to diet-induced obesity. PLoS ONE 8:e53836CrossRefPubMedPubMedCentralGoogle Scholar
  53. Peterfy M, Phan J, Xu P, Reue K (2001) Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 27:121–124CrossRefPubMedGoogle Scholar
  54. Pols TW, Ottenhoff R, Vos M, Levels JH, Quax PH, Meijers JC, Pannekoek H, Groen AK, de Vries CJ (2008) Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity. Biochem Biophys Res Commun 366:910–916CrossRefPubMedGoogle Scholar
  55. Quintana FJ, Jin H, Burns EJ, Nadeau M, Yeste A, Kumar D, Rangachari M, Zhu C, Xiao S, Seavitt J, Georgopoulos K, Kuchroo VK (2012) Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat Immunol 13:770–777CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ratnam S, Bozek G, Martin T, Gallagher SJ, Payne CJ, Storb U (2017) Ssm1b expression and function in germ cells of adult mice and in early embryos. Mol Reprod Dev 84:596–613CrossRefPubMedGoogle Scholar
  57. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140CrossRefPubMedGoogle Scholar
  58. Roviezzo F, Di Lorenzo A, Bucci M, Brancaleone V, Vellecco V, De Nardo M, Orlotti D, De Palma R, Rossi F, D’Agostino B, Cirino G (2007) Sphingosine-1-phosphate/sphingosine kinase pathway is involved in mouse airway hyperresponsiveness. Am J Respir Cell Mol Biol 36:757–762CrossRefPubMedGoogle Scholar
  59. Sapienza C, Peterson AC, Rossant J, Balling R (1987) Degree of methylation of transgenes is dependent on gamete of origin. Nature 328:251–254CrossRefPubMedGoogle Scholar
  60. Schmiedel BJ, Seumois G, Samaniego-Castruita D, Cayford J, Schulten V, Chavez L, Ay F, Sette A, Peters B, Vijayanand P (2016) 17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells. Nature Commun 7:13426CrossRefGoogle Scholar
  61. Soderman J, Berglind L, Almer S (2015) Gene expression-genotype analysis implicates GSDMA, GSDMB, and LRRC3C as contributors to inflammatory bowel disease susceptibility. BioMed Res Int 2015:834805CrossRefPubMedPubMedCentralGoogle Scholar
  62. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, Li Y, Kurreeman FA, Zhernakova A, Hinks A, Guiducci C, Chen R, Alfredsson L, Amos CI, Ardlie KG, Barton A, Bowes J, Brouwer E, Burtt NP, Catanese JJ, Coblyn J, Coenen MJ, Costenbader KH, Criswell LA, Crusius JB, Cui J, de Bakker PI, De Jager PL, Ding B, Emery P, Flynn E, Harrison P, Hocking LJ, Huizinga TW, Kastner DL, Ke X, Lee AT, Liu X, Martin P, Morgan AW, Padyukov L, Posthumus MD, Radstake TR, Reid DM, Seielstad M, Seldin MF, Shadick NA, Steer S, Tak PP, Thomson W, van der Schoot CE, van Riel PL, Weinblatt ME, Wilson AG, Wolbink GJ, Wordsworth BP, Wijmenga C, Karlson EW, Toes RE, de Vries N, Begovich AB, Worthington J, Siminovitch KA, Gregersen PK, Klareskog L, Plenge RM, van der Helm-van Mil AH, van der Horst-Bruinsma IE (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42:508–514CrossRefPubMedPubMedCentralGoogle Scholar
  63. Torabi F, Bogle OA, Estanyol JM, Oliva R, Miller D (2017) Zona pellucida-binding protein 2 (ZPBP2) and several proteins containing BX7B motifs in human sperm may have hyaluronic acid binding or recognition properties. Mol Hum Reprod 23:803–816CrossRefPubMedGoogle Scholar
  64. Trankner D, Hahne N, Sugino K, Hoon MA, Zuker C (2014) Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci USA 111:11515–11520CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tsai NP, Ho PC, Wei LN (2008) Regulation of stress granule dynamics by Grb7 and FAK signalling pathway. EMBO J 27:715–726CrossRefPubMedPubMedCentralGoogle Scholar
  66. Turker MS (2002) Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 21:5388–5393CrossRefPubMedGoogle Scholar
  67. Van Handel E, Zilversmit DB (1957) Micromethod for the direct determination of serum triglycerides. J Lab Clin Med 50:152–157Google Scholar
  68. Veltman M, Stolarczyk M, Radzioch D, Wojewodka G, De Sanctis JB, Dik WA, Dzyubachyk O, Oravecz T, de Kleer I, Scholte BJ (2016) Correction of lung inflammation in a F508del CFTR murine cystic fibrosis model by the sphingosine-1-phosphate lyase inhibitor LX2931. Am J Physiol Lung Cell Mol Physiol 311:L1000–L1014CrossRefPubMedGoogle Scholar
  69. Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Lariviere M, Moussette S, Grundberg E, Kwan T, Ouimet M, Ge B, Hoberman R, Swiatek M, Dias J, Lam KC, Koka V, Harmsen E, Soto-Quiros M, Avila L, Celedon JC, Weiss ST, Dewar K, Sinnett D, Laprise C, Raby BA, Pastinen T, Naumova AK (2009) Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet 85:377–393CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wang JH, Avitahl N, Cariappa A, Friedrich C, Ikeda T, Renold A, Andrikopoulos K, Liang L, Pillai S, Morgan BA, Georgopoulos K (1998) Aiolos regulates B cell activation and maturation to effector state. Immunity 9:543–553CrossRefPubMedGoogle Scholar
  71. Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299CrossRefPubMedGoogle Scholar
  72. Watanabe Y, Yamamoto H, Oikawa R, Toyota M, Yamamoto M, Kokudo N, Tanaka S, Arii S, Yotsuyanagi H, Koike K, Itoh F (2015) DNA methylation at hepatitis B viral integrants is associated with methylation at flanking human genomic sequences. Genome Res 25:328–337CrossRefPubMedPubMedCentralGoogle Scholar
  73. Worgall TS (2017) Sphingolipids, ORMDL3 and asthma: what is the evidence? Curr Opin Clin Nutr Metabol Care 20:99–103Google Scholar
  74. Worgall TS, Veerappan A, Sung B, Kim BI, Weiner E, Bholah R, Silver RB, Jiang XC, Worgall S (2013) Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity. Sci Transl Med 5:186ra67CrossRefPubMedGoogle Scholar
  75. Wu J, Spiegel S, Sturgill TW (1995) Sphingosine 1-phosphate rapidly activates the mitogen-activated protein kinase pathway by a G protein-dependent mechanism. J Biol Chem 270:11484–11488CrossRefPubMedGoogle Scholar
  76. Zhakupova A, Debeuf N, Krols M, Toussaint W, Vanhoutte L, Alecu I, Kutalik Z, Vollenweider P, Ernst D, von Eckardstein A, Lambrecht BN, Janssens S, Hornemann T (2016) ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase. FASEB J 30:4289–4300CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cynthia Kanagaratham
    • 1
  • Victoria Chiwara
    • 1
  • Bianca Ho
    • 1
  • Sanny Moussette
    • 2
  • Mina Youssef
    • 1
  • David Venuto
    • 3
  • Lucie Jeannotte
    • 4
    • 5
  • Guillaume Bourque
    • 1
    • 3
  • Juan Bautista de Sanctis
    • 6
  • Danuta Radzioch
    • 1
    • 2
    • 7
    • 8
  • Anna K. Naumova
    • 1
    • 2
    • 9
  1. 1.Department of Human GeneticsMcGill UniversityMontrealCanada
  2. 2.The Research Institute of the McGill University Health CentreMontrealCanada
  3. 3.McGill University and Genome Quebec Innovation CentreMontrealCanada
  4. 4.Département de Biologie moléculaire, Biochimie medicale & Pathologie, Faculté de médecineUniversité LavalQuébecCanada
  5. 5.Centre de recherche sur le cancer de l’Université LavalCRCHU de Québec-Université LavalQuébecCanada
  6. 6.Institute of Immunology, Faculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
  7. 7.Division of Experimental Medicine, Faculty of MedicineMcGill UniversityMontrealCanada
  8. 8.Infectious Diseases and Immunity in Global Health Program (IDIGH)The Research Institute of the McGill University Health CentreMontrealCanada
  9. 9.Department of Obstetrics and GynecologyMcGill UniversityMontrealCanada

Personalised recommendations