Skip to main content
Log in

Congenic mapping and candidate gene analysis for streptozotocin-induced diabetes susceptibility locus on mouse chromosome 11

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Streptozotocin (STZ) has been widely used to induce diabetes in rodents. Strain-dependent variation in susceptibility to STZ has been reported; however, the gene(s) responsible for STZ susceptibility has not been identified. Here, we utilized the A/J-11SM consomic strain and a set of chromosome 11 (Chr. 11) congenic strains developed from A/J-11SM to identify a candidate STZ-induced diabetes susceptibility gene. The A/J strain exhibited significantly higher susceptibility to STZ-induced diabetes than the A/J-11SM strain, confirming the existence of a susceptibility locus on Chr. 11. We named this locus Stzds1 (STZ-induced diabetes susceptibility 1). Congenic mapping using the Chr. 11 congenic strains indicated that the Stzds1 locus was located between D11Mit163 (27.72 Mb) and D11Mit51 (36.39 Mb). The Mpg gene, which encodes N-methylpurine DNA glycosylase (MPG), a ubiquitous DNA repair enzyme responsible for the removal of alkylated base lesions in DNA, is located within the Stzds1 region. There is a close relationship between DNA alkylation at an early stage of STZ action and the function of MPG. A Sanger sequence analysis of the Mpg gene revealed five polymorphic sites in the A/J genome. One variant, p.Ala132Ser, was located in a highly conserved region among rodent species and in the minimal region for retained enzyme activity of MPG. It is likely that structural alteration of MPG caused by the p.Ala132Ser mutation elicits increased recognition and excision of alkylated base lesions in DNA by STZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babaya N, Ikegami H, Fujisawa T, Nojima K, Itoi-Babaya M, Inoue K, Ohno T, Shibata M, Ogihara T (2005) Susceptibility to streptozotocin-induced diabetes is mapped to mouse chromosome 11. Biochem Biophys Res Commun 328:158–164

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar S, Oler AT, Rabaglia ME, Stapleton DS, Schueler KL, Truchan NA, Worzella SL, Stoehr JP, Clee SM, Yandell BS, Keller MP, Thurmond DC, Attie AD (2011) Positional cloning of a type 2 diabetes quantitative trait locus; tomosyn-2, a negative regulator of insulin secretion. PLoS Genet 7:e1002323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb H (1999) Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 5:314–319

    Article  CAS  PubMed  Google Scholar 

  • Burns N, Gold B (2007) The effect of 3-methyladenine DNA glycosylase-mediated DNA repair on the induction of toxicity and diabetes by the beta-cell toxicant streptozotocin. Toxicol Sci 95:391–400

    Article  CAS  PubMed  Google Scholar 

  • Cardinal JW, Margison GP, Mynett KJ, Yates AP, Cameron DP, Elder RH (2001) Increased susceptibility to streptozotocin-induced beta-cell apoptosis and delayed autoimmune diabetes in alkylpurine-DNA-N-glycosylase-deficient mice. Mol Cell Biol 21:5605–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clee SM, Yandell BS, Schueler KM, Rabaglia ME, Richards OC, Raines SM, Kabara EA, Klass DM, Mui ET, Stapleton DS, Gray-Keller MP, Young MB, Stoehr JP, Lan H, Boronenkov I, Raess PW, Flowers MT, Attie AD (2006) Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nat Genet 38:688–693

    Article  CAS  PubMed  Google Scholar 

  • Daimon M, Oizumi T, Toriyama S, Karasawa S, Jimbu Y, Wada K, Kameda W, Susa S, Muramatsu M, Kubota I, Kawata S, Kato T (2009) Association of the Ser326Cys polymorphism in the OGG1 gene with type 2 DM. Biochem Biophys Res Commun 386:26–29

    Article  CAS  PubMed  Google Scholar 

  • Dooley J, Tian L, Schonefeldt S, Delghingaro-Augusto V, Garcia-Perez JE, Pasciuto E, Di Marino D, Carr EJ, Oskolkov N, Lyssenko V, Franckaert D, Lagou V, Overbergh L, Vandenbussche J, Allemeersch J, Chabot-Roy G, Dahlstrom JE, Laybutt DR, Petrovsky N, Socha L, Gevaert K, Jetten AM, Lambrechts D, Linterman MA, Goodnow CC, Nolan CJ, Lesage S, Schlenner SM, Liston A (2016) Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet 48:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Festing MF (1996) Origins and characteristics of inbred strains of mice. In: Lyon MF, Rasten S, Brown SDM (eds) Genetic variants and strains of the laboratory mouse. Oxford University Press, New York, pp 1537–1576

    Google Scholar 

  • Gonzalez C, Cuvellier S, Hue-Beauvais C, Lévi-Strauss M (2003) Genetic control of non obese diabetic mice susceptibility to high-dose streptozotocin-induced diabetes. Diabetologia 46:1291–1295

    Article  CAS  PubMed  Google Scholar 

  • Hada N, Kobayashi M, Fujiyoshi M, Ishikawa A, Kuga M, Nishimura M, Ebihara S, Ohno T, Horio F (2008) Quantitative trait loci for impaired glucose tolerance in nondiabetic SM/J and A/J mice. Physiol Genomics 35:65–74

    Article  CAS  PubMed  Google Scholar 

  • Hadjivassiliou V, Green MH, James RF, Swift SM, Clayton HA, Green IC (1998) Insulin secretion, DNA damage, and apoptosis in human and rat islets of Langerhans following exposure to nitric oxide, peroxynitrite, and cytokines. Nitric Oxide 2:429–441

    Article  CAS  PubMed  Google Scholar 

  • Kaku K, Fiedorek FT Jr, Province M, Permutt MA (1988) Genetic analysis of glucose tolerance in inbred mouse strains: evidence for polygenic control. Diabetes 37:707–713

    Article  CAS  PubMed  Google Scholar 

  • Kaku K, McGill J, Province M, Permutt MA (1989) A single major gene controls most of the difference in susceptibility to streptozotocin-induced diabetes between C57BL/6J and C3H/HeJ mice. Diabetologia 32:716–723

    Article  CAS  PubMed  Google Scholar 

  • Kikutani H, Makino S (1992) The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 51:285–322

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Ohno T, Hada N, Fujiyoshi M, Kuga M, Nishimura M, Murai A, Horio F (2010) Genetic analysis of abdominal fat distribution in SM/J and A/J mice. J Lipid Res 51:3463–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolb H (1987) Mouse models of insulin dependent diabetes: low-dose streptozocin-induced diabetes and nonobese diabetic (NOD) mice. Diabetes Metab Rev 3:751–778

    Article  CAS  PubMed  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    Article  CAS  PubMed  Google Scholar 

  • Liston A, Todd JA, Lagou V (2017) Beta-cell fragility as a common underlying risk factor in type 1 and type 2 diabetes. Trends Mol Med 23:181–194

    Article  CAS  PubMed  Google Scholar 

  • Masutani M, Suzuki H, Kamada N, Watanabe M, Ueda O, Nozaki T, Jishage K, Watanabe T, Sugimoto T, Nakagama H, Ochiya T, Sugimura T (1999) Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:2301–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeau JH, Singer JB, Matin A, Lander ES (2000) Analysing complex genetic traits with chromosome substitution strains. Nat Genet 24:221–225

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Hirayama N, Serikawa T, Kanehira K, Matsushima Y, Katoh H, Wakana S, Kojima A, Hiai H (1995) The SMXA: a new set of recombinant inbred strain of mice consisting of 26 substrains and their genetic profile. Mamm Genome 6:850–857

    Article  CAS  PubMed  Google Scholar 

  • Ohno T, Hata K, Baba T, Io F, Kobayashi M, Horio F, Nishimura M (2012) Establishment of consomic strains derived from A/J and SM/J mice for genetic analysis of complex traits. Mamm Genome 23:764–769

    Article  PubMed  Google Scholar 

  • Pataer A, Nishimura M, Kamoto T, Ichioka K, Sato M, Hiai H (1997) Genetic resistance to urethan-induced pulmonary adenomas in SMXA recombinant inbred mouse strains. Cancer Res 57:2904–2908

    CAS  PubMed  Google Scholar 

  • Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S, Verma A, Wang ZQ, Snyder SH (1999) Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:3059–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogner UC, Avner P (2003) Congenic mice: cutting tools for complex immune disorders. Nat Rev Immunol 3:243–252

    Article  CAS  PubMed  Google Scholar 

  • Rossini AA, Appel MC, Williams RM, Like AA (1977) Genetic influence of the streptozotocin-induced insulitis and hyperglycemia. Diabetes 26:916–920

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Kumar A, Lee JC, Mitra S (1996) The domains of mammalian base excision repair enzyme N-methylpurine-DNA glycosylase. Interaction, conformational change, and role in DNA binding and damage recognition. J Biol Chem 271:23690–23697

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Biswas T, Hazra TK, Roy G, Grabowski DT, Izumi T, Srinivasan G, Mitra S (1998) Specific interaction of wild-type and truncated mouse N-methylpurine-DNA glycosylase with ethenoadenine-containing DNA. Biochemistry 37:580–589

    Article  CAS  PubMed  Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M, O’Brien WE, Conti DV, Witte JS, Lander ES, Nadeau JH (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448

    Article  CAS  PubMed  Google Scholar 

  • Stylianou IM, Clinton M, Keightley PD, Pritchard C, Tymowska-Lalanne Z, Bunger L, Horvat S (2005) Microarray gene expression analysis of the Fob3b obesity QTL identifies positional candidate gene Sqle and perturbed cholesterol and glycolysis pathways. Physiol Genomics 20:224–232

    Article  CAS  PubMed  Google Scholar 

  • Szkudelski T (2012) Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med 237:481–490

    Article  CAS  Google Scholar 

  • Takada T, Mita A, Maeno A, Sakai T, Shitara H, Kikkawa Y, Moriwaki K, Yonekawa H, Shiroishi T (2008) Mouse inter-subspecific consomic strains for genetic dissection of quantitative complex traits. Genome Res 18:500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Mizorogi T, Nishijima K, Kuwahara S, Tsujio M, Aoyama H, Taguchi C, Kobayashi M, Horio F, Ohno T (2009) Body and major organ weights of A/J-Chr11SM consomic mice. Exp Anim 58:357–361

    Article  CAS  PubMed  Google Scholar 

  • Thameem F, Puppala S, Lehman DM, Stern MP, Blangero J, Abboud HE, Duggirala R, Habib SL (2009) The Ser(326)Cys polymorphism of 8-oxoguanine glycosylase 1 (OGG1) is associated with type 2 diabetes in Mexican Americans. Hum Hered 70:97–101

    Article  Google Scholar 

  • Ueda H, Ikegami H, Yamato E, Fu J, Fukuda M, Shen G, Kawaguchi Y, Takekawa K, Fujioka Y, Fujisawa T, Nakagawa Y, Hamada Y, Shibata M, Ogihara T (1995) The NSY mouse: a new animal model of spontaneous NIDDM with moderate obesity. Diabetologia 38:503–508

    Article  CAS  PubMed  Google Scholar 

  • Wyatt MD, Allan JM, Lau AY, Ellenberger TE, Samson LD (1999) 3-Methyladenine DNA glycosylases: structure, function, and biological importance. Bioessays 21:668–676

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Uchigata Y, Okamoto H (1981) Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose)synthetase in pancreatic islets. Nature 294:284–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (23500494 to T. Ohno).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamio Ohno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maegawa, T., Miyasaka, Y., Kobayashi, M. et al. Congenic mapping and candidate gene analysis for streptozotocin-induced diabetes susceptibility locus on mouse chromosome 11. Mamm Genome 29, 273–280 (2018). https://doi.org/10.1007/s00335-018-9742-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-018-9742-y

Keywords

Navigation