Advertisement

Mammalian Genome

, Volume 29, Issue 1–2, pp 141–152 | Cite as

Linking inter-individual variability to endocrine disruptors: insights for epigenetic inheritance

  • Sarah E. Latchney
  • Ashley M. Fields
  • Martha Susiarjo
Article

Abstract

Endocrine disrupting chemicals (EDCs) can induce a myriad of adverse health effects. An area of active investigation is the multi- and transgenerational inheritance of EDC-induced adverse health effects referring to the transmission of phenotypes across multiple generations via the germline. The inheritance of EDC-induced adverse health effects across multiple generations can occur independent of genetics, spurring much research into the transmission of underlying epigenetic mechanisms. Epigenetic mechanisms play important roles in the development of an organism and are responsive to environmental exposures. To date, rodent studies have demonstrated that acquired epigenetic marks, particularly DNA methylation, that are inherited following parental EDC exposure can escape embryonic epigenome reprogramming. The acquired epimutations can lead to subsequent adult-onset diseases. Increasing studies have reported inter-individual variations that occur with epigenetic inheritance. Factors that underlie differences among individuals could reveal previously unidentified mechanisms of epigenetic transmission. In this review, we give an overview of DNA methylation and posttranslational histone modification as the potential mechanisms for disease transmission, and define the requirements for multi- and transgenerational epigenetic inheritance. We subsequently evaluate rodent studies investigating how acquired changes in epigenetic marks especially DNA methylation across multiple generations can vary among individuals following parental EDC exposure. We also discuss potential sources of inter-individual variations and the challenges in identifying these variations. We conclude our review discussing the challenges in applying rodent generational studies to humans.

Notes

Acknowledgements

S.E.L. is supported by funds from the National Institute of General Medical Sciences (K12 GM106997). A.M.F and M.S. are supported by funds from the National Institute of Environmental Health Sciences (T32 ES007026 and R00 ES02244).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

335_2017_9729_MOESM1_ESM.xlsx (35 kb)
Supplementary material 1 (XLSX 35 KB)

References

  1. Aiba T, Saito T, Hayashi A, Sato S, Yunokawa H, Maruyama T, Fujibuchi W, Kurita H, Tohyama COhsako S (2017) Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles. BMC Mol Biol 18:7PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Veenstra GJ (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17:425–434PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alyea RA, Gollapudi BB, Rasoulpour RJ (2014) Are we ready to consider transgenerational epigenetic effects in human health risk assessment? Environ Mol Mutagen 55:292–298PubMedCrossRefGoogle Scholar
  4. Anway MD, Skinner MK (2008) Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease. Prostate 68:517–529PubMedCrossRefGoogle Scholar
  5. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469PubMedCrossRefGoogle Scholar
  6. Anway MD, Memon MA, Uzumcu M, Skinner MK (2006) Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 27:868–879PubMedCrossRefGoogle Scholar
  7. Anway MD, Rekow SS, Skinner MK (2008) Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 91:30–40PubMedCrossRefGoogle Scholar
  8. Barker DJ (1995) Fetal origins of coronary heart disease. BMJ 311:171–174PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Lahr MM, McNamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE (2004) Developmental plasticity and human health. Nature 430:419–421PubMedCrossRefGoogle Scholar
  10. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bock C, Walter J, Paulsen M, Lengauer T (2008) Inter-individual variation of DNA methylation and its implications for large-scale epigenome mapping. Nucleic Acids Res 36:e55PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353PubMedCrossRefGoogle Scholar
  13. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brieno-Enriquez MA, Garcia-Lopez J, Cardenas DB, Guibert S, Cleroux E, Ded L, Hourcade Jde D, Peknicova J, Weber M, Del Mazo J (2015) Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS ONE 10:e0124296PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schübeler D, Stadler MB, Peters AH (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17(6):679–687PubMedCrossRefGoogle Scholar
  16. Busuttil RA, Garcia AM, Reddick RL, Dolle ME, Calder RB, Nelson JF, Vijg J (2007) Intra-organ variation in age-related mutation accumulation in the mouse. PLoS ONE 2:e876PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chamorro-Garcia R, Sahu M, Abbey RJ, Laude J, Pham N, Blumberg B (2013) Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ Health Perspect 121:359–366PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen Q, Yan W, Duan E (2016) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 17:733–743PubMedPubMedCentralCrossRefGoogle Scholar
  20. Choudhary D, Jansson I, Schenkman JB, Sarfarazi M, Stoilov I (2003) Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch Biochem Biophys 414:91–100PubMedCrossRefGoogle Scholar
  21. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G, Kendziorski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle JM, Lowenstein PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR, Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R, Nadeau JH, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Page GP, Paigen B, Paigen K, Palmer AA, Pan HJ, Peltonen-Palotie L, Peirce J, Pomp D, Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk LC, Seltzer Z, Shimomura K, Shou S, Sillanpaa MJ, Siracusa LD, Snoeck HW, Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena FP, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M, Zou F, Complex Trait C (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137PubMedCrossRefGoogle Scholar
  22. Ciabrelli F, Comoglio F, Fellous S, Bonev B, Ninova M, Szabo Q, Xuereb A, Klopp C, Aravin A, Paro R, Bantignies F, Cavalli G (2017) Stable Polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nat Genet 49:876–886PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cossetti C, Lugini L, Astrologo L, Saggio I, Fais S, Spadafora C (2014) Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS ONE 9:e101629PubMedPubMedCentralCrossRefGoogle Scholar
  24. Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, Sugahara N, Simon C, Moore H, Harness JV, Keirstead H, Sanchez-Mut JV, Kaneki E, Lapunzina P, Soejima H, Wake N, Esteller M, Ogata T, Hata K, Nakabayashi K, Monk D (2014) Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 24:554–569PubMedPubMedCentralCrossRefGoogle Scholar
  25. Crews D, Gore AC (2014). Transgenerational Epigenetics: current controversies and debates, Elsevier ScienceGoogle Scholar
  26. Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA 104:5942–5946PubMedPubMedCentralCrossRefGoogle Scholar
  27. Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S, Anastassiadis K, Stunnenberg HG, Stewart AF (2014) Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141:526–537PubMedCrossRefGoogle Scholar
  28. Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schübeler D, van der Vlag J, Stadler MB, Peters AH (2013) Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20(7):868–875PubMedCrossRefGoogle Scholar
  29. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402PubMedCrossRefGoogle Scholar
  30. Ficz G, Hore TA, Santos F, Lee HJ, Dean W, Arand J, Krueger F, Oxley D, Paul YL, Walter J, Cook SJ, Andrews S, Branco MR, Reik W (2013) FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13:351–359PubMedPubMedCentralCrossRefGoogle Scholar
  31. Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158PubMedCrossRefGoogle Scholar
  32. Gaydos LJ, Wang W, Strome S (2014) Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345:1515–1518PubMedPubMedCentralCrossRefGoogle Scholar
  33. Geisler SJ, Paro R (2015) Trithorax and Polycomb group-dependent regulation: a tale of opposing activities. Development 142:2876–2887PubMedCrossRefGoogle Scholar
  34. Gertz J, Varley KE, Reddy TE, Bowling KM, Pauli F, Parker SL, Kucera KS, Willard HF, Myers RM (2011) Analysis of DNA methylation in a three-generation family reveals widespread genetic influence on epigenetic regulation. PLoS Genet 7:e1002228PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gillette R, Miller-Crews I, Nilsson EE, Skinner MK, Gore AC, Crews D (2014) Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology 155:3853–3866PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gordon L, Joo JH, Andronikos R, Ollikainen M, Wallace EM, Umstad MP, Permezel M, Oshlack A, Morley R, Carlin JB, Saffery R, Smyth GK, Craig JM (2011) Expression discordance of monozygotic twins at birth: effect of intrauterine environment and a possible mechanism for fetal programming. Epigenetics 6:579–592PubMedCrossRefGoogle Scholar
  37. Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, Andronikos R, Cruickshank MN, Conneely KN, Smith AK, Alisch RS, Morley R, Visscher PM, Craig JM, Saffery R (2012) Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res 22:1395–1406PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gravina S, Dong X, Yu B, Vijg J (2016) Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol 17:150PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gray LE Jr, Ostby J, Monosson E, Kelce WR (1999) Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol Ind Health 15:48–64PubMedCrossRefGoogle Scholar
  40. Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK (2010). Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE 5:e13100PubMedPubMedCentralCrossRefGoogle Scholar
  41. Guerrero-Bosagna C, Covert TR, Haque MM, Settles M, Nilsson EE, Anway MD, Skinner MK (2012) Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod Toxicol 34:694–707PubMedPubMedCentralCrossRefGoogle Scholar
  42. Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, Yan J, Ren X, Lin S, Li J, Jin X, Shi X, Liu P, Wang X, Wang W, Wei Y, Li X, Guo F, Wu X, Fan X, Yong J, Wen L, Xie SX, Tang F, Qiao J (2014) The DNA methylation landscape of human early embryos. Nature 511:606–610PubMedCrossRefGoogle Scholar
  43. Hammoud SS, Low DH, Yi C, Carrell DT, Guccione E, Cairns BR (2014) Chromatin and Transcription Transitions of Mammalian Adult Germline Stem Cells and Spermatogenesis. Cell Stem Cell 15(2):239–253PubMedCrossRefGoogle Scholar
  44. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature.  http://dx.doi.org/10.1038/nature08162 PubMedPubMedCentralGoogle Scholar
  45. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23PubMedCrossRefGoogle Scholar
  46. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307PubMedPubMedCentralCrossRefGoogle Scholar
  47. Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109PubMedPubMedCentralCrossRefGoogle Scholar
  48. Holeski LM, Jander G, Agrawal AA (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27:618–626PubMedCrossRefGoogle Scholar
  49. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform 13:86CrossRefGoogle Scholar
  50. Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh J, Gvom Saal FS (1999) Exposure to bisphenol A advances puberty. Nature 401:763–764PubMedCrossRefGoogle Scholar
  51. Hu D, Garruss AS, Gao X, Morgan MA, Cook M, Smith ER, Shilatifard A (2013) The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat Struct Mol Biol 20:1093–1097PubMedPubMedCentralCrossRefGoogle Scholar
  52. Inawaka K, Kawabe M, Takahashi S, Doi Y, Tomigahara Y, Tarui H, Abe J, Kawamura S, Shirai T (2009) Maternal exposure to anti-androgenic compounds, vinclozolin, flutamide and procymidone, has no effects on spermatogenesis and DNA methylation in male rats of subsequent generations. Toxicol Appl Pharmacol 237:178–187PubMedCrossRefGoogle Scholar
  53. Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y (2017) Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547:419–424PubMedCrossRefGoogle Scholar
  54. Iqbal K, Tran DA, Li AX, Warden C, Bai AY, Singh P, Wu X, Pfeifer GP, Szabo PE (2015) Deleterious effects of endocrine disruptors are corrected in the mammalian germline by epigenome reprogramming. Genome Biol 16:59PubMedPubMedCentralCrossRefGoogle Scholar
  55. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jaffe A, EIrizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15:R31PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262PubMedCrossRefGoogle Scholar
  59. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492PubMedCrossRefGoogle Scholar
  60. Kaati G, Bygren LO, Pembrey M, Sjostrom M (2007) Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 15:784–790PubMedCrossRefGoogle Scholar
  61. Katz DJ, Edwards TM, Reinke V, Kelly WG (2009) A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137:308–320PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, Li K, Murty VV, Schupf N, Vilain E, Morris M, Haghighi F, Tycko B (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40:904–908PubMedCrossRefGoogle Scholar
  63. Klip H, Verloop J, van Gool JD, Koster ME, Burger CW, van Leeuwen FE, Group OP (2002) Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet 359:1102–1107PubMedCrossRefGoogle Scholar
  64. Laird CD, Pleasant ND, Clark AD, Sneeden JL, Hassan KM, Manley NC, Vary JC Jr, Morgan T, Hansen RS, Stoger R (2004) Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc Natl Acad Sci USA 101:204–209PubMedCrossRefGoogle Scholar
  65. Lappalainen T, Greally JM (2017) Associating cellular epigenetic models with human phenotypes. Nat Rev Genet 18:441–451PubMedCrossRefGoogle Scholar
  66. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313PubMedPubMedCentralCrossRefGoogle Scholar
  67. Li G, Chang H, Xia W, Mao Z, Li Y, Xu S (2014a) F0 maternal BPA exposure induced glucose intolerance of F2 generation through DNA methylation change in Gck. Toxicol Lett 228:192–199PubMedCrossRefGoogle Scholar
  68. Li L, Zhang T, Qin XS, Ge W, Ma HG, Sun LL, Hou ZM, Chen H, Chen P, Qin GQ, Shen W, Zhang XF (2014b) Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol Biol Rep 41:1227–1235PubMedCrossRefGoogle Scholar
  69. Lim JP, Brunet A (2013) Bridging the transgenerational gap with epigenetic memory. Trends Genet 29:176–186PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905PubMedPubMedCentralCrossRefGoogle Scholar
  73. Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK (2012) Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS ONE 7:e31901PubMedPubMedCentralCrossRefGoogle Scholar
  74. Manikkam M, Haque MM, Guerrero-Bosagna C, Nilsson EE, Skinner MK (2014) Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLoS ONE 9:e102091PubMedPubMedCentralCrossRefGoogle Scholar
  75. Martos SN, Tang WY, Wang Z (2015) Elusive inheritance: transgenerational effects and epigenetic inheritance in human environmental disease. Prog Biophys Mol Biol 118:44–54PubMedPubMedCentralCrossRefGoogle Scholar
  76. McCarrey JR (2014) Distinctions between transgenerational and non-transgenerational epimutations. Mol Cell Endocrinol 398:13–23PubMedCrossRefGoogle Scholar
  77. McCullough SD, Bowers EC, On DM, Morgan DS, Dailey LA, Hines RN, Devlin RB, Diaz-Sanchez D (2016) Baseline chromatin modification levels may predict interindividual variability in ozone-induced gene expression. Toxicol Sci 150:216–224PubMedCrossRefGoogle Scholar
  78. Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28:812–828PubMedPubMedCentralCrossRefGoogle Scholar
  79. Modder UI, Sanyal A, Kearns AE, Sibonga JD, Nishihara E, Xu J, O’Malley BW, Ritman EL, Riggs BL, Spelsberg TC, Khosla S (2004) Effects of loss of steroid receptor coactivator-1 on the skeletal response to estrogen in mice. Endocrinology 145:913–921PubMedCrossRefGoogle Scholar
  80. Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK (2012) Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS ONE 7:e36129PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, Novakovic B, Abdul Aziz NK, Carlin JB, Morley R, Saffery R, Craig JM (2010) DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Hum Mol Genet 19:4176–4188PubMedCrossRefGoogle Scholar
  82. Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ (2008) Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115:1243–1249PubMedCrossRefGoogle Scholar
  83. Patil V, Ward RL, Hesson LB (2014) The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9:823–828PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pocar P, Fiandanese N, Berrini A, Secchi C, Borromeo V (2017) Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice. Toxicol Appl Pharmacol 322:113–121PubMedCrossRefGoogle Scholar
  85. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 97:5237–5242PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rechavi O, Minevich G, Hobert O (2011) Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147:1248–1256PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rodier PM (1994) Vulnerable periods and processes during central nervous system development. Environ Health Perspect 102(Suppl 2):121–124PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol 11:2959–2962PubMedCrossRefGoogle Scholar
  89. Ruden DM, Lu X (2008) Hsp90 affecting chromatin remodeling might explain transgenerational epigenetic inheritance in Drosophila. Curr Genomics 9:500–508PubMedPubMedCentralCrossRefGoogle Scholar
  90. Schneider S, Kaufmann W, Buesen R, van Ravenzwaay B (2008) Vinclozolin—the lack of a transgenerational effect after oral maternal exposure during organogenesis. Reprod Toxicol 25:352–360PubMedCrossRefGoogle Scholar
  91. Schneider S, Marxfeld H, Groters S, Buesen R, van Ravenzwaay B (2013) Vinclozolin–no transgenerational inheritance of anti-androgenic effects after maternal exposure during organogenesis via the intraperitoneal route. Reprod Toxicol 37:6–14PubMedCrossRefGoogle Scholar
  92. Schroeder DI, Blair JD, Lott P, Yu HO, Hong D, Crary F, Ashwood P, Walker C, Korf I, Robinson WP, LaSalle JM (2013) The human placenta methylome. Proc Natl Acad Sci USA 110:6037–6042PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326PubMedCrossRefGoogle Scholar
  94. Sharma A (2013) Transgenerational epigenetic inheritance: focus on soma to germline information transfer. Prog Biophys Mol Biol 113:439–446PubMedCrossRefGoogle Scholar
  95. Shea JM, Serra RW, Carone BR, Shulha HP, Kucukural A, Ziller MJ, Vallaster MP, Gu H, Tapper AR, Gardner PD, Meissner A, Garber M, Rando OJ (2015) Genetic and epigenetic variation, but not diet, shape the sperm methylome. Dev Cell 35:750–758PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shoemaker R, Deng J, Wang W, Zhang K (2010) Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 20:883–889PubMedPubMedCentralCrossRefGoogle Scholar
  97. Skinner MK, Anway MD, Savenkova MI, Gore AC, Crews D (2008) Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS ONE 3:e3745PubMedPubMedCentralCrossRefGoogle Scholar
  98. Skinner MK, Bhandari RK, Haque MM, Nilsson EE (2015a) Environmentally induced epigenetic transgenerational inheritance of altered SRY genomic binding during gonadal sex determination. Environ Epigenet 1:dvv004PubMedPubMedCentralCrossRefGoogle Scholar
  99. Skinner MK, Guerrero-Bosagna C, Haque MM (2015b) Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics 10:762–771PubMedPubMedCentralCrossRefGoogle Scholar
  100. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820PubMedPubMedCentralCrossRefGoogle Scholar
  101. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–344PubMedPubMedCentralCrossRefGoogle Scholar
  102. Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, Eggan K, Meissner A (2014) DNA methylation dynamics of the human preimplantation embryo. Nature 511:611–615PubMedPubMedCentralCrossRefGoogle Scholar
  103. Solecki R, Kortenkamp A, Bergman A, Chahoud I, Degen GH, Dietrich D, Greim H, Hakansson H, Hass U, Husoy T, Jacobs M, Jobling S, Mantovani A, Marx-Stoelting P, Piersma A, Ritz V, Slama R, Stahlmann R, van den Berg M, Zoeller RT, Boobis AR (2017) Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement. Arch Toxicol 91:1001–1006PubMedCrossRefGoogle Scholar
  104. Stouder C, Paoloni-Giacobino A (2010) Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 139:373–379PubMedCrossRefGoogle Scholar
  105. Stouder C, Paoloni-Giacobino A (2011) Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction 141:207–216PubMedCrossRefGoogle Scholar
  106. Sun Q, Huang S, Wang X, Zhu Y, Chen Z, Chen D (2015) N6-methyladenine functions as a potential epigenetic mark in eukaryotes. Bioessays 37:1155–1162PubMedCrossRefGoogle Scholar
  107. Susiarjo M, Xin F, Bansal A, Stefaniak M, Li C, Simmons RA, Bartolomei MS (2015) Bisphenol a exposure disrupts metabolic health across multiple generations in the mouse. Endocrinology 156:2049–2058PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tang WW, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR, Hackett JA, Chinnery PF, Surani MA (2015) A unique gene regulatory network resets the human germline epigenome for development. Cell 161:1453–1467PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tang A, Huang Y, Li Z, Wan S, Mou L, Yin G, Li N, Xie J, Xia Y, Li X, Luo L, Zhang J, Chen S, Wu S, Sun J, Sun X, Jiang Z, Chen J, Li Y, Wang J, Wang J, Cai Z, Gui Y (2016) Analysis of a four generation family reveals the widespread sequence-dependent maintenance of allelic DNA methylation in somatic and germ cells. Sci Rep 6:19260PubMedPubMedCentralCrossRefGoogle Scholar
  111. Theodorou V (2013) Susceptibility to stress-induced visceral sensitivity: a bad legacy for next generations. Neurogastroenterol Motil 25:927–930PubMedCrossRefGoogle Scholar
  112. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249PubMedCrossRefGoogle Scholar
  113. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118:1055–1070PubMedPubMedCentralCrossRefGoogle Scholar
  114. Veenendaal MV, Costello PM, Lillycrop KA, de Rooij SR, van der Post JA, Bossuyt PM, Hanson MA, Painter RC, Roseboom TJ (2012) Prenatal famine exposure, health in later life and promoter methylation of four candidate genes. J Dev Orig Health Dis 3:450–457PubMedCrossRefGoogle Scholar
  115. Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, Gluckman PD, Hanson MA, Roseboom TJ (2013) Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 120:548–553PubMedCrossRefGoogle Scholar
  116. Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27:1318–1338PubMedPubMedCentralCrossRefGoogle Scholar
  117. Waddington CH (1942). The Epigenotpye. Endeavour: pp 18–20Google Scholar
  118. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854PubMedCrossRefGoogle Scholar
  119. Wion D, Casadesus J (2006) N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol 4:183–192PubMedPubMedCentralCrossRefGoogle Scholar
  120. Xin F, Susiarjo M, Bartolomei MS (2015) Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin Cell Dev Biol 43:66–75PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xing Y, Shi S, Le L, Lee CA, Silver-Morse L, Li WX (2007) Evidence for transgenerational transmission of epigenetic tumor susceptibility in Drosophila. PLoS Genet 3:1598–1606PubMedCrossRefGoogle Scholar
  122. Zenk F, Loeser E, Schiavo R, Kilpert F, Bogdanovic OIovino N (2017) Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science 357:212–216PubMedCrossRefGoogle Scholar
  123. Zhang Y, Rohde C, Reinhardt R, Voelcker-Rehage C, Jeltsch A (2009) Non-imprinted allele-specific DNA methylation on human autosomes. Genome Biol 10:R138PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Environmental MedicineUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations