Skip to main content

Advertisement

Log in

Verification of a genetic locus for methamphetamine intake and the impact of morphine

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

A quantitative trait locus (QTL) on proximal chromosome (Chr) 10 accounts for > 50% of the genetic variance in methamphetamine (MA) intake in mice selectively bred for high (MAHDR) and low (MALDR) voluntary MA drinking. The µ-opioid receptor (MOP-r) gene, Oprm1, resides at the proximal end of Chr 10, and buprenorphine reduces MA intake in MAHDR mice. However, this drug has only partial agonist effects at MOP-r. We investigated the impact of a full MOP-r agonist, morphine, on MA intake and saccharin intake, measured MOP-r density and affinity in several brain regions of the MA drinking lines and their C57BL/6J (B6) and DBA/2J (D2) progenitor strains, and measured MA intake in two congenic strains of mice to verify the QTL and reduce the QTL interval. Morphine reduced MA intake in the MAHDR line, but also reduced saccharin and total fluid intake. MOP-r density was lower in the medial prefrontal cortex of MAHDR, compared to MALDR, mice, but not in the nucleus accumbens or ventral midbrain; there were no MOP-r affinity differences. No significant differences in MOP-r density or affinity were found between the progenitor strains. Finally, Chr 10 congenic results were consistent with previous data suggesting that Oprm1 is not a quantitative trait gene, but is impacted by the gene network underlying MA intake. Stimulation of opioid pathways by a full agonist can reduce MA intake, but may also non-specifically affect consummatory behavior; thus, a partial agonist may be a better pharmacotherapeutic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abekawa T, Ohmori T, Ito K, Koyama T (2000) D1 dopamine receptor activation reduces extracellular glutamate and GABA concentrations in the medial prefrontal cortex. Brain Res 867:250–254

    Article  CAS  PubMed  Google Scholar 

  • Althobaiti YS, Almalki AH, Das SC, Alshehri FS, Sari Y (2016) Effects of repeated high-dose methamphetamine and ceftriaxone post-treatments on tissue content of dopamine and serotonin as well as glutamate and glutamine. Neurosci Lett 634:25–31

    Article  CAS  PubMed  Google Scholar 

  • Aoyama N, Takahashi N, Kitaichi K, Ishihara R, Saito S, Maeno N, Ji X, Takagi K, Sekine Y, Iyo M, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Iwata N, Inada T, Ozaki N (2006) Association between gene polymorphisms of SLC22A3 and methamphetamine use disorder. Alcohol Clin Exp Res 30:1644–1649

    Article  CAS  PubMed  Google Scholar 

  • Belknap JK, Richards SP, O’Toole LA, Helms ML, Phillips TJ (1997) Short-term selective breeding as a tool for QTL mapping: ethanol preference drinking in mice. Behav Genet 27:55–66

    Article  CAS  PubMed  Google Scholar 

  • Belknap JK, McWeeney S, Reed C, Burkhart-Kasch S, McKinnon CS, Li N, Baba H, Scibelli AC, Hitzemann R, Phillips TJ (2013) Genetic factors involved in risk for methamphetamine intake and sensitization. Mamm Genome 24:446–458

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shahar OM, Szumlinski KK, Lominac KD, Cohen A, Gordon E, Ploense KL, DeMartini J, Bernstein N, Rudy NM, Nabhan AN, Sacramento A, Pagano K, Carosso GA, Woodward N (2012) Extended access to cocaine self-administration results in reduced glutamate function within the medial prefrontal cortex. Addict Biol 17:746–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boas RA, Villiger JW (1985) Clinical actions of fentanyl and buprenorphine. The significance of receptor binding. Br J Anaesth 57:192–196

    Article  CAS  PubMed  Google Scholar 

  • Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873

    CAS  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    PubMed  Google Scholar 

  • Dlugos AM, Hamidovic A, Hodgkinson C, Shen PH, Goldman D, Palmer AA, de Wit H (2011) OPRM1 gene variants modulate amphetamine-induced euphoria in humans. Genes Brain Behav 10:199–209

    Article  CAS  PubMed  Google Scholar 

  • Doyle GA, Schwebel CL, Ruiz SE, Chou AD, Lai AT, Wang MJ, Smith GG, Buono RJ, Berrettini WH, Ferraro TN (2014) Analysis of candidate genes for morphine preference quantitative trait locus Mop2. Neuroscience 277:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duttaroy A, Yoburn BC (1995) The effect of intrinsic efficacy on opioid tolerance. Anesthesiology 82:1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Eastwood EC, Phillips TJ (2014a) Opioid sensitivity in mice selectively bred to consume or not consume methamphetamine. Addict Biol 19:370–379

    Article  CAS  PubMed  Google Scholar 

  • Eastwood EC, Phillips TJ (2014b) Morphine intake and the effects of naltrexone and buprenorphine on the acquisition of methamphetamine intake. Genes Brain Behav 13:226–235

    Article  CAS  PubMed  Google Scholar 

  • Foltin RW, Fischman MW (1996) Effects of methadone or buprenorphine maintenance on the subjective and reinforcing effects of intravenous cocaine in humans. J Pharmacol Exp Ther 278:1153–1164

    CAS  PubMed  Google Scholar 

  • Gubner NR, Reed C, McKinnon CS, Phillips TJ (2013) Unique genetic factors influence sensitivity to the rewarding and aversive effects of methamphetamine versus cocaine. Behav Brain Res 256:420–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harkness JH, Shi X, Janowsky A, Phillips TJ (2015) Trace amine-associated receptor 1 regulation of methamphetamine intake and related traits. Neuropsychopharmacology 40:2175–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iamjan SA, Thanoi S, Watiktinkorn P, Nudmamud-Thanoi S, Reynolds GP (2015) BDNF (Val66Met) genetic polymorphism is associated with vulnerability for methamphetamine dependence. Pharmacogenomics 16:1541–1545

    Article  CAS  PubMed  Google Scholar 

  • Ide S, Kobayashi H, Tanaka K, Ujike H, Sekine Y, Ozaki N, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Ikeda K, Sora I (2004) Gene polymorphisms of the mu opioid receptor in methamphetamine abusers. Ann N Y Acad Sci 1025:316–324

    Article  CAS  PubMed  Google Scholar 

  • Jayaram-Lindström N, Hammarberg A, Beck O, Franck J (2008a) Naltrexone for the treatment of amphetamine dependence: a randomized, placebo-controlled trial. Am J Psychiatry 165:1442–1448

    Article  PubMed  Google Scholar 

  • Jayaram-Lindström N, Konstenius M, Eksborg S, Beck O, Hammarberg A, Franck J (2008b) Naltrexone attenuates the subjective effects of amphetamine in patients with amphetamine dependence. Neuropsychopharmacology 33:1856–1863

    Article  PubMed  Google Scholar 

  • Jayaram-Lindström N, Guterstam J, Häggkvist J, Ericson M, Malmlöf T, Schilström B, Halldin C, Cervenka S, Saijo T, Nordström AL, Franck J (2017) Naltrexone modulates dopamine release following chronic, but not acute amphetamine administration: a translational study. Transl Psychiatry 7:e1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack GM (2007) Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50,u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 323:346–355

    Article  CAS  PubMed  Google Scholar 

  • Lominac KD, McKenna CL, Schwartz LM, Ruiz PN, Wroten MG, Miller BW, Holloway JJ, Travis KO, Rajasekar G, Maliniak D, Thompson AB, Urman LE, Phillips TJ, Szumlinski KK (2014) Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation. Front Syst Neurosci 8:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Lominac KD, Quadir SG, Barrett HM, McKenna CL, Schwartz LM, Ruiz PN, Wroten MG, Campbell RR, Miller BW, Holloway JJ, Travis KO, Rajasekar G, Maliniak D, Thompson AB, Urman LE, Kippin TE, Phillips TJ, Szumlinski KK (2016) Prefrontal glutamate correlates of methamphetamine sensitization and preference. Eur J Neurosci 43:689–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutfy K, Cowan A (2004) Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol 2:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutfy K, Eitan S, Bryant CD, Yang YC, Saliminejad N, Walwyn W, Kieffer BL, Takeshima H, Carroll FI, Maidment NT, Evans CJ (2003) Buprenorphine-induced antinociception is mediated by µ-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors. J Neurosci 23:10331–10337

    CAS  PubMed  Google Scholar 

  • Phillips TJ, Shabani S (2015) An animal model of differential genetic risk for methamphetamine intake. Front Neurosci 9:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Pick CG, Peter Y, Schreiber S, Weizman R (1997) Pharmacological characterization of buprenorphine, a mixed agonist-antagonist with kappa 3 analgesia. Brain Res 744:41–46

    Article  CAS  PubMed  Google Scholar 

  • Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T (1994) Pharmacological characterization of the cloned ĸ-, δ-, and µ-opioid receptors. Mol Pharmacol 45:330–334

    CAS  PubMed  Google Scholar 

  • Sadée W, Rosenbaum J, Herz A (1982) Buprenorphine: differential interaction with opiate receptor subtypes in vivo. J Pharmacol Exp Ther 223(1):157–162

    PubMed  Google Scholar 

  • Salehi M, Emadossadat A, Kheirabadi GR, Maracy MR, Sharbafchi MR (2015) The effect of buprenorphine on methamphetamine cravings. J Clin Psychopharmacol 35:724–727

    Article  CAS  PubMed  Google Scholar 

  • Schad CA, Justice JB Jr, Holtzman SG (2002) Endogenous opioids in dopaminergic cell body regions modulate amphetamine-induced increases in extracellular dopamine levels in the terminal regions. J Pharmacol Exp Ther 300:932–938

    Article  CAS  PubMed  Google Scholar 

  • Schottenfeld RS, Pakes J, Ziedonis D, Kosten TR (1993) Buprenorphine: dose-related effects on cocaine and opioid use in cocaine-abusing opioid-dependent humans. Biol Psychiatry 34:66–74

    Article  CAS  PubMed  Google Scholar 

  • Shabani S, McKinnon CS, Reed C, Cunningham CL, Phillips TJ (2011) Sensitivity to rewarding or aversive effects of methamphetamine determines methamphetamine intake. Genes Brain Behav 10:625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabani S, Dobbs LK, Ford MM, Mark GP, Finn DA, Phillips TJ (2012a) A genetic animal model of differential sensitivity to methamphetamine reinforcement. Neuropharmacology 62:2169–2177

    Article  CAS  PubMed  Google Scholar 

  • Shabani S, McKinnon CS, Cunningham CL, Phillips TJ (2012b) Profound reduction in sensitivity to the aversive effects of methamphetamine in mice bred for high methamphetamine intake. Neuropharmacology 62:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Shabani S, Houlton SK, Hellmuth L, Mojica E, Mootz JR, Zhu Z, Reed C, Phillips TJ (2016) A mouse model for binge-level methamphetamine use. Front Neurosci 10:493

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi X, Walter NA, Harkness JH, Neve KA, Williams RW, Lu L, Belknap JK, Eshleman AJ, Phillips TJ, Janowsky A (2016) Genetic polymorphisms affect mouse and human trace amine-associated receptor 1 function. PLoS ONE 11:e0152581

    Article  PubMed  PubMed Central  Google Scholar 

  • Shifman S, Bell JT, Copley RR, Taylor MS, Williams RW, Mott R, Flint J (2006) A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol 4:e395

    Article  PubMed  PubMed Central  Google Scholar 

  • Szumlinski KK, Lominac KD, Campbell RR, Cohen M, Fultz EK, Brown CN, Miller BW, Quadir SG, Martin D, Thompson AB, von Jonquieres G, Klugmann M, Phillips TJ, Kippin TE (2017) Methamphetamine addiction vulnerability: the glutamate, the bad, and the ugly. Biol Psychiatry 81:959–970

    Article  CAS  PubMed  Google Scholar 

  • Taber MT, Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. J Neurosci 15:3896–3904

    Article  CAS  PubMed  Google Scholar 

  • Wang PC, Ho IK, Lee CW (2015) Buprenorphine-elicited alteration of adenylate cyclase activity in human embryonic kidney 293 cells coexpressing ĸ-, µ-opioid and nociceptin receptors. J Cell Mol Med 19:2587–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler JM, Reed C, Burkhart-Kasch S, Li N, Cunningham CL, Janowsky A, Franken FH, Wiren KM, Hashimoto JG, Scibelli AC, Phillips TJ (2009) Genetically correlated effects of selective breeding for high and low methamphetamine consumption. Genes Brain Behav 8:758–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research presented here was supported by Department of Veterans Affairs Grants I01BX002106 and I01BX002758, National Institutes of Health Grants T32DA07262, P50DA018165, U01DA041579, and R24AA020245, and a National Institutes of Health-Veterans Affairs interagency agreement. The views and opinions expressed are those of the authors and should not be construed to represent the views of the affiliated institutions or the funding agencies. We thank Harue Baba for her help with genotyping and data collection and Robert Johnson for his technical support with the receptor binding assays. We also thank Drs. Glenn Doyle and Thomas Ferraro for provision of the congenic mice from which we established our breeding stock for the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara J. Phillips.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eastwood, E.C., Eshleman, A.J., Janowsky, A. et al. Verification of a genetic locus for methamphetamine intake and the impact of morphine. Mamm Genome 29, 260–272 (2018). https://doi.org/10.1007/s00335-017-9724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-017-9724-5

Keywords

Navigation