Skip to main content

Advertisement

Log in

The oncogenic role of GASC1 in chemically induced mouse skin cancer

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Gene amplified in squamous cell carcinoma (SCC) 1 (GASC1), also known as KDM4C/JMJD2C, encodes a histone demethylase that specifically demethylates lysine residues (H3K9, H3K36, and H1.4K26) and plays a crucial role in the regulation of gene expression as well as in heterochromatin formation. GASC1 is located at human chromosome 9p23–24, where frequent genomic amplification is observed in human esophageal cancer, and its aberrant expression is detected in a variety of human cancers, such as breast, colon, and prostate. Therefore, it is highly likely that GASC1 contributes to the genesis and/or development of cancer. However, there is a lack of direct evidence of GASC1 having an oncogenic function. In this study, we aimed to clarify the role of GASC1 in the skin SCC carcinogenesis. For this purpose, we generated Gasc1-heterozygous mice (Gasc1 +/−) with reduced expression of Gasc1. On the basis of our results, Gasc1 +/− mice displayed a significantly lower incidence and multiplicity of both benign and malignant tumors induced by the two-stage skin carcinogenesis protocol than wild-type mice. In addition, the volume of carcinoma was significantly lower in Gasc1 +/ mice. Consistent with these observations, knocking down of Gasc1 resulted in reduced cell viability of SCC cells in vitro. Our findings clearly demonstrated that GASC1 has an oncogenic role in skin carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20:56–59

    Article  CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Berry WL, Janknecht R (2013) KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res 73:2936–2942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Black JC, Whetstine JR (2011) Chromatin landscape: methylation beyond transcription. Epigenetics 6:9–15

    Article  CAS  PubMed  Google Scholar 

  • Bremner R, Balmain A (1990) Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7. Cell 61:407–417

    Article  CAS  PubMed  Google Scholar 

  • Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH, Helin K (2006) The putative oncogene GASC1 demethylates tri- and di-methylated lysine 9 on histone H3. Nature 442:307–311

    Article  CAS  PubMed  Google Scholar 

  • Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    Article  CAS  PubMed  Google Scholar 

  • Ehrbrecht A, Muller U, Wolter M, Hoischen A, Koch A, Radlwimmer B, Actor B, Mincheva A, Pietsch T, Lichter P, Reifenberger G, Weber RG (2006) Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208:554–563

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara K, Ghosh S, Liang P, Morien E, Soma M, Nagase H (2015) Genome-wide screening of aberrant DNA methylation which associated with gene expression in mouse skin cancers. Mol Carcinog 54:178–188

    Article  CAS  PubMed  Google Scholar 

  • Han W, Jung EM, Cho J, Lee JW, Hwang KT, Yang SJ, Kang JJ, Bae JY, Jeon YK, Park IA, Nicolau M, Jeffrey SS, Noh DY (2008) DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes Chromosom Cancer 47:490–499

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91:9700–9704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Italiano A, Attias R, Aurias A, Perot G, Burel-Vandenbos F, Otto J, Venissac N, Pedeutour F (2006) Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23–p24 amplification including JAK2 and JMJD2C. Cancer Genet Cytogenet 167:122–130

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Song JJ, Lee J, Kim MY (2014) Epigenetics: an emerging player in gastric cancer. World J Gastroenterol 20:6433–6447

    Article  PubMed Central  PubMed  Google Scholar 

  • Kouskouti A, Talianidis I (2005) Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J 24:347–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153:590–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP, Yang ZQ (2009) Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28:4491–4500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo W, Chang R, Zhong J, Pandey A, Semenza GL (2012) Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci USA 109:E3367–E3376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quintanilla M, Haddow S, Jonas D, Jaffe D, Bowden GT, Balmain A (1991) Comparison of ras activation during epidermal carcinogenesis in vitro and in vivo. Carcinogenesis 12:1875–1881

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339

    Article  CAS  PubMed  Google Scholar 

  • Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G, Wright GW, Lenz G, Ngo VN, Shaffer AL, Xu W, Zhao H, Yang Y, Lamy L, Davis RE, Xiao W, Powell J, Maloney D, Thomas CJ, Moller P, Rosenwald A, Ott G, Muller-Hermelink HK, Savage K, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Weisenburger DD, Chan WC, Gascoyne RD, Levens D, Staudt LM (2010) Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18:590–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20:341–348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shin S, Janknecht R (2007) Diversity within the JMJD2 histone demethylase family. Biochem Biophys Res Commun 353:973–977

    Article  CAS  PubMed  Google Scholar 

  • Sun LL, Holowatyj A, Xu XE, Wu JY, Wu ZY, Shen JH, Wang SH, Li EM, Yang ZQ, Xu LY (2013) Histone demethylase GASC1, a potential prognostic and predictive marker in esophageal squamous cell carcinoma. Am J Cancer Res 3:509–517

    PubMed Central  PubMed  Google Scholar 

  • Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H, Jenuwein T, Reinberg D (2009) Dynamic histone H1 isotype 4 methylation and demethylation by histone Lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins. J Biol Chem 284:8395–8405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uimonen K, Merikallio H, Paakko P, Harju T, Mannermaa A, Palvimo J, Kosma VM, Soini Y (2014) GASC1 expression in lung carcinoma is associated with smoking and prognosis of squamous cell carcinoma. Histol Histopathol 29:797–804

    PubMed  Google Scholar 

  • Venturini L, You J, Stadler M, Galien R, Lallemand V, Koken MH, Mattei MG, Ganser A, Chambon P, Losson R, de TH (1999) TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. Oncogene 18:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:467–481

    Article  CAS  PubMed  Google Scholar 

  • Yang ZQ, Imoto I, Pimkhaokham A, Shimada Y, Sasaki K, Oka M, Inazawa J (2001) A novel amplicon at 9p23–24 in squamous cell carcinoma of the esophagus that lies proximal to GASC1 and harbors NFIB. Jpn J Cancer Res 92:423–428

    Article  CAS  PubMed  Google Scholar 

  • You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22:9–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. M. Kataba, Ms. A. Oguni, and Mr. J. Igarashi for their technical support and Ms. K. Takgata for her secretarial assistance. This work was supported in part by MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2011–2015) to Kyoko Fujiwara, Tadashi Terui, Masayoshi Soma and Hiroki Nagase, by JSPS KAKENHI Grant Number 24591637, 15K09791 to Kyoko Fujiwara and Tadashi Terui, by the Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation to Johji Inazawa and the New Energy and Industrial Technology Development Organization (NEDO) to Johji Inazawa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoko Fujiwara or Hiroki Nagase.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2015_9592_MOESM1_ESM.tif

Supplementary material 1. Supplementary Figure S1 Body weights of wild-type and Gasc1 +/− mice. None of the animals used in this analysis were treated with DMBA and TPA. Their body weights were measured every 2 weeks from 4 weeks of age up to 56 weeks (TIFF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozaki, Y., Fujiwara, K., Ikeda, M. et al. The oncogenic role of GASC1 in chemically induced mouse skin cancer. Mamm Genome 26, 591–597 (2015). https://doi.org/10.1007/s00335-015-9592-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-015-9592-9

Keywords

Navigation