Skip to main content
Log in

Effect of IVF and laser zona dissection on DNA methylation pattern of mouse zygotes

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

In vitro fertilization (IVF) and zona pellucida laser microdissection-facilitated IVF (Laser-IVF) are presently routine procedures in human assisted reproduction. The safety of these methods at the epigenetic level is not fully understood. Studies on mouse Laser-IVF embryos provide evidence that the use of Laser-IVF leads to reduced birth rate, indicating a potential harm of this technique for the embryo. Hence, the aim of this study was to examine the difference in DNA methylation pattern between IVF- and Laser-IVF-derived mouse zygotes. We examined two experimental groups of C3HeB/FeJ oocytes: (1) zona-intact and (2) laser-microdissected oocytes that were fertilized in vitro with freshly collected spermatozoa. Zygotes were fixed 5, 8, and 12 h after fertilization, and indirect immunofluorescence staining was studied using an anti-5-methylcytidine (5-MeC) antibody. The fluorescence intensities of paternal and maternal pronuclei were evaluated using the computer-assisted analysis of digital images. In addition, we performed a semiquantitative RT-PCR analysis of the presence of transcripts of three developmental marker genes, Oct4, Dab2, and Dnmt3b, in IVF- and Laser-IVF-derived blastocysts. We observed no significant differences in methylation status of the paternal genome and in the transcripts of the developmental marker genes after IVF and Laser-IVF. In conclusion, epigenetic patterns and early embryonic development are not altered by laser-assisted IVF techniques and another explanation must be sought for the poor implantation rates observed in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124:4615–4625

    Article  CAS  PubMed  Google Scholar 

  • Boersma A, Marschall S, Hrabe de Angelis M (2007) Laser-assisted IVF—an alternative approach for successful cryopreservation of mutant mouse lines on C57BL/6 background. International Mouse Genome Conference, Kyoto, Japan, October 28 - November 1, 2007, P77

  • Depypere HT, McLaughlin KJ, Seamark RF, Warnes GM, Matthews CD (1988) Comparison of zona cutting and zona drilling as techniques for assisted fertilization in the mouse. J Reprod Fertil 84:205–211

    Article  CAS  PubMed  Google Scholar 

  • Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526–1535

    Article  CAS  PubMed  Google Scholar 

  • el-Danasouri I, Westphal LM, Neev Y, Gebhardt J, Louie D et al (1993) Zona opening with 308 nm XeCl excimer laser improves fertilization by spermatozoa from long-term vasectomized mice. Hum Reprod 8:464–466

    Article  CAS  PubMed  Google Scholar 

  • Enginsu ME, Schutze K, Bellanca S, Pensis M, Campo R et al (1995) Micromanipulation of mouse gametes with laser microbeam and optical tweezers. Hum Reprod 10:1761–1764

    Article  CAS  PubMed  Google Scholar 

  • Fulka H, Fulka J (2006) No differences in the DNA methylation pattern in mouse zygotes produced in vivo, in vitro, or by intracytoplasmic sperm injection. Fertil Steril 86:1534–1536

    Article  PubMed  Google Scholar 

  • Germond M, Nocera D, Senn A, Rink K, Delacretaz G et al (1995) Microdissection of mouse and human zona pellucida using a 1.48-microns diode laser beam: efficacy and safety of the procedure. Fertil Steril 64:604–611

    Article  CAS  PubMed  Google Scholar 

  • Germond M, Nocera D, Senn A, Rink K, Delacretaz G et al (1996) Improved fertilization and implantation rates after non-touch zona pellucida microdrilling of mouse oocytes with a 1.48 microm diode laser beam. Hum Reprod 11:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa R, Sasaki H (2009) Dynamic transition of Dnmt3b expression in mouse pre- and early post-implantation embryos. Gene Expr Patterns 9:27–30

    Article  CAS  PubMed  Google Scholar 

  • Hollis A, Rastegar S, Descloux L, Delacretaz G, Rink K (1997) Zona pellucida microdrilling with a 1.48-micron diode laser. IEEE Eng Med Biol Mag 16:43–47

    Article  CAS  PubMed  Google Scholar 

  • Howlett SK, Reik W (1991) Methylation levels of maternal and paternal genomes during preimplantation development. Development 113:119–127

    Article  CAS  PubMed  Google Scholar 

  • Hrabe de Angelis M, Balling R (1998) Large scale ENU screens in the mouse: genetics meets genomics. Mutat Res 400:25–32

    Article  CAS  PubMed  Google Scholar 

  • Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D et al (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25:444–447

    Article  CAS  PubMed  Google Scholar 

  • Kawase Y, Iwata T, Ueda O, Kamada N, Tachibe T et al (2002) Effect of partial incision of the zona pellucida by piezo-micromanipulator for in vitro fertilization using frozen-thawed mouse spermatozoa on the developmental rate of embryos transferred at the 2-cell stage. Biol Reprod 66:381–385

    Article  CAS  PubMed  Google Scholar 

  • Kawase Y, Aoki Y, Kamada N, Jishage K, Suzuki H (2004) Comparison of fertility between intracytoplasmic sperm injection and in vitro fertilization with a partial zona pellucida incision by using a piezo-micromanipulator in cryopreserved inbred mouse spermatozoa. Contemp Top Lab Anim Sci 43:21–25

    CAS  PubMed  Google Scholar 

  • Khosla S, Dean W, Brown D, Reik W, Feil R (2001a) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64:918–926

    Article  CAS  PubMed  Google Scholar 

  • Khosla S, Dean W, Reik W, Feil R (2001b) Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update 7:419–427

    Article  CAS  PubMed  Google Scholar 

  • Kishigami S, Van Thuan N, Hikichi T, Ohta H, Wakayama S et al (2006) Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids. Dev Biol 289:195–205

    Article  CAS  PubMed  Google Scholar 

  • Landel CP (2005) Archiving mouse strains by cryopreservation. Lab Anim 34:50–57

    Article  Google Scholar 

  • Liow SL, Bongso A, Ng SC (1996) Fertilization, embryonic development and implantation of mouse oocytes with one or two laser-drilled holes in the zona, and inseminated at different sperm concentrations. Hum Reprod 11:1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Marschall S, Hrabe de Angelis M (1999) Cryopreservation of mouse spermatozoa: double your mouse space. Trends Genet 15:128–131

    Article  CAS  PubMed  Google Scholar 

  • Marschall S, Huffstadt U, Balling R, Hrabe de Angelis M (1999) Reliable recovery of inbred mouse lines using cryopreserved spermatozoa. Mamm Genome 10:773–776

    Article  CAS  PubMed  Google Scholar 

  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502

    Article  CAS  PubMed  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  CAS  PubMed  Google Scholar 

  • Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Nakagata N (2000) Cryopreservation of mouse spermatozoa. Mamm Genome 11:572–576

    Article  CAS  PubMed  Google Scholar 

  • Nakagata N, Takeshima T (1993) Cryopreservation of mouse spermatozoa from inbred and F1 hybrid strains. Jikken Dobutsu 42:317–320

    CAS  PubMed  Google Scholar 

  • Nakagata N, Okamoto M, Ueda O, Suzuki H (1997) Positive effect of partial zona-pellucida dissection on the in vitro fertilizing capacity of cryopreserved C57BL/6 J transgenic mouse spermatozoa of low motility. Biol Reprod 57:1050–1055

    Article  CAS  PubMed  Google Scholar 

  • Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA (2002) Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim 36:20–42

    Article  CAS  PubMed  Google Scholar 

  • Nolan PM, Peters J, Strivens M, Rogers D, Hagan J et al (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443

    Article  CAS  PubMed  Google Scholar 

  • Obruca A, Strohmer H, Sakkas D, Menezo Y, Kogosowski A et al (1994) Use of lasers in assisted fertilization and hatching. Hum Reprod 9:1723–1726

    Article  CAS  PubMed  Google Scholar 

  • Oswald J, Engemann S, Lane N, Mayer W, Olek A et al (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10:475–478

    Article  CAS  PubMed  Google Scholar 

  • Payne D (1995) Micro-assisted fertilization. Reprod Fertil Dev 7:831–839

    Article  CAS  PubMed  Google Scholar 

  • Peters DD, Marschall S, Mahabir E, Boersma A, Heinzmann U et al (2006) Risk assessment of mouse hepatitis virus infection via in vitro fertilization and embryo transfer by the use of zona-intact and laser-microdissected oocytes. Biol Reprod 74:246–252

    Article  CAS  PubMed  Google Scholar 

  • Quinn P, Kerin JF, Warnes GM (1985) Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril 44:493–498

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Ribas RC, Taylor JE, McCorquodale C, Mauricio AC, Sousa M et al (2006) Effect of zona pellucida removal on DNA methylation in early mouse embryos. Biol Reprod 74:307–313

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  CAS  PubMed  Google Scholar 

  • Scholer HR, Dressler GR, Balling R, Rohdewohld H, Gruss P (1990) Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J 9:2185–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczygiel MA, Kusakabe H, Yanagimachi R, Whittingham DG (2002) Intracytoplasmic sperm injection is more efficient than in vitro fertilization for generating mouse embryos from cryopreserved spermatozoa. Biol Reprod 67:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Sztein JM, Farley JS, Mobraaten LE (2000) In vitro fertilization with cryopreserved inbred mouse sperm. Biol Reprod 63:1774–1780

    Article  CAS  PubMed  Google Scholar 

  • Thornton CE, Brown SD, Glenister PH (1999) Large numbers of mice established by in vitro fertilization with cryopreserved spermatozoa: implications and applications for genetic resource banks, mutagenesis screens, and mouse backcrosses. Mamm Genome 10:987–992

    Article  CAS  PubMed  Google Scholar 

  • Wrenzycki C, Herrmann D, Carnwath JW, Niemann H (1999) Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol Reprod Dev 53(1):8–18

    Article  CAS  PubMed  Google Scholar 

  • Yanagimachi R (1998) Intracytoplasmic sperm injection experiments using the mouse as a model. Hum Reprod 13(Suppl 1):87–98

    Article  PubMed  Google Scholar 

  • Yang DH, Smith ER, Roland IH, Sheng Z, He J et al (2002) Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev Biol 251:27–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission under FP6, by EMMA inf (RII3-CT-2004-506455) to MHdA and by a grant from the National Genome Research Network, NGFN + (01GS0850), to MHdA. We thank Stefanie Dunst, Monika Beschorner, Andrea Bäßler, Alexander Huber, and Bernhard Rey for excellent technical assistance. We are grateful to John Favor for valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hrabé de Angelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, D.D., Lepikhov, K., Rodenacker, K. et al. Effect of IVF and laser zona dissection on DNA methylation pattern of mouse zygotes. Mamm Genome 20, 664–673 (2009). https://doi.org/10.1007/s00335-009-9227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9227-0

Keywords

Navigation