Skip to main content
Log in

Nanog retrotransposed genes with functionally conserved open reading frames

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The Nanog gene plays a key role in the pluripotency of early embryonic cells in vitro and in vivo. In this article retrotransposed copies of Nanog, termed NanogPc and NanogPd, are identified on mouse Chromosomes 4 and 7, respectively. In contrast to the two previously characterized mouse Nanog retrogenes that contain multiple frameshifts and point mutations, NanogPc and NanogPd are 98% identical to NANOG within the open reading frame and encode proteins with activity in an embryonic stem cell self-renewal assay. Mutations common to all four retrotransposed genes but distinct from Nanog suggest divergence from a common progenitor that appears likely to be Nanog because transcripts derived from Nanog but not from the retrogenes are detected in germ-line cells. The possibility that expression of Nanog could be erroneously attributed to novel cellular sources is suggested by the high homology among Nanog, NanogPc, and NanogPd. Analysis of distinct Mus species suggests that NanogPc and NanogPd arose between divergence of M. caroli and M. spretus and indicates that Nanog retrotransposition events continue to occur at a high frequency, a property likely to extend to other germ-line transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  PubMed  CAS  Google Scholar 

  • Betran E, Emerson JJ, Kaessmann H, Long M (2004) Sex chromosomes and male functions: where do new genes go? Cell Cycle 3(7):873–875

    PubMed  CAS  Google Scholar 

  • Booth HA, Holland PW (2004) Eleven daughters of NANOG. Genomics 84(2):229–238

    Article  PubMed  CAS  Google Scholar 

  • Boschan C, Borchert A, Ufer C, Thiele BJ, Kuhn H (2002) Discovery of a functional retrotransposon of the murine phospholipid hydroperoxide glutathione peroxidase: chromosomal localization and tissue-specific expression pattern. Genomics 79(3):387–394

    Article  PubMed  CAS  Google Scholar 

  • Bradley J, Baltus A, Skaletsky H, Royce-Tolland M, Dewar K, et al. (2004) An X-to-autosome retrogene is required for spermatogenesis in mice. Nat Genet 36(8):872–876

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti R, McCracken JB Jr, Chakrabarti D, Souba WW (1995) Detection of a functional promoter/enhancer in an intron-less human gene encoding a glutamine synthetase-like enzyme. Gene 153(2):163–199

    Article  PubMed  CAS  Google Scholar 

  • Chambers I (2005) Mechanisms and factors in embryonic stem cell self-renewal. Rend Fis Acc Lincei 16(9):83–97

    Google Scholar 

  • Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23(43):7150–7160

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, et al. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    Article  PubMed  CAS  Google Scholar 

  • Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, et al. (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283

    Article  PubMed  CAS  Google Scholar 

  • Emerson JJ, Kaessmann H, Betran E, Long M (2004) Extensive gene traffic on the mammalian X chromosome. Science 303(5657):537–540

    Article  PubMed  CAS  Google Scholar 

  • Goncalves I, Duret L, Mouchiroud D (2000) Nature and structure of human genes that generate retropseudogenes. Genome Res 10(5):672–678

    Article  PubMed  CAS  Google Scholar 

  • Graur D, Shuali Y, Li WH (1989) Deletions in processed pseudogenes accumulate faster in rodents than in humans. J Mol Evol 28(4):279–285

    Article  PubMed  CAS  Google Scholar 

  • Haeseleer F, Huang J, Lebioda L, Saari JC, Palczewski K (1998) Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J Biol Chem 273(34):21790–21799

    Article  PubMed  CAS  Google Scholar 

  • Hart AH, Hartley L, Ibrahim M, Robb L (2004) Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn 230(1):187–198

    Article  PubMed  CAS  Google Scholar 

  • Hatano SY, Tada K, Kimura H, Yamaguchi S, Kono T, et al. (2005) Pluripotential competence of cells associated with Nanog activity. Mech Dev 122(1):67–79

    Article  PubMed  CAS  Google Scholar 

  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, et al. (2002) A stem cell molecular signature. Science 298(5593):601–604

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kim J, Kim BS, Chung HY, Lee YY, et al. (2005) Identification and functional characterization of an alternative splice variant within the fourth exon of human nanog. Exp Mol Med 37(6):601–607

    PubMed  CAS  Google Scholar 

  • Klamp T, Boehm U, Schenk D, Pfeffer K, Howard JC (2003) A giant GTPase, very large inducible GTPase-1, is inducible by IFNs. J Immunol 171(3):1255–1265

    PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15(20):8125–8148

    PubMed  CAS  Google Scholar 

  • Lam MY, Nadeau JH (2003) Genetic control of susceptibility to spontaneous testicular germ cell tumors in mice. APMIS 111(1):184–190; discussion 191

    Article  PubMed  Google Scholar 

  • Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS Lett 468(2–3):109–114

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Sewawa K, Murakami M, et al. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, et al. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  PubMed  CAS  Google Scholar 

  • Nikbakht KN, Boone LR, Glover PL, Myer FE, Yang WK (1987) Characterization of a molecular clone of RFM/Un mouse chromosomal DNA that contains a full-length endogenous murine leukaemia virus-related proviral genome. J Gen Virol 68 (Pt 3):683–693

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24(4):372–376

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Masui S, Chambers I, Smith AG, Miyazaki J (2002) Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol Cell Biol 22(5):1526–1536

    Article  PubMed  CAS  Google Scholar 

  • Padgett RA, Grabowski PJ, Konarska MM, Seiler S, Sharp PA (1986) Splicing of messenger RNA precursors. Annu Rev Biochem 55:1119–1150

    Article  PubMed  CAS  Google Scholar 

  • Pain D, Chirn GW, Strassel C, Kemp DM (2005) Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification. J Biol Chem 280(8):6265–6268

    Article  PubMed  CAS  Google Scholar 

  • Pan G, Pei D (2005) The stem cell pluripotency factor NANOG activates transcription with two unusually potent subdomains at its C-terminus. J Biol Chem 280(2):1401-1407

    Article  PubMed  CAS  Google Scholar 

  • Pesce M, Gross MK, Scholer HR (1998) In line with our ancestors: Oct-4 and the mammalian germ. Bioessays 20(9):722–732

    Article  PubMed  CAS  Google Scholar 

  • Rohozinski J, Bishop CE (2004) The mouse juvenile spermatogonial depletion (jsd) phenotype is due to a mutation in the X-derived retrogene, mUtp14b. Proc Natl Acad Sci U S A 101(32):11695–11700

    Article  PubMed  CAS  Google Scholar 

  • Silver LM (1995) Mouse Genetics (Oxford, UK: Oxford University Press)

    Google Scholar 

  • Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, et al. (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16(1):19–27

    Article  PubMed  CAS  Google Scholar 

  • Smith A (1998) Cell therapy: in search of pluripotency. Current Biol 8, 802–804

    Article  Google Scholar 

  • Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, et al. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690

    Article  PubMed  CAS  Google Scholar 

  • Threadgill DW, Yee D, Matin A, Nadeau JH, Magnuson T (1997) Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain. Mamm Genome 8(6):390–393

    Article  PubMed  CAS  Google Scholar 

  • Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Annu Rev Genet 19, 253–272

    Article  PubMed  CAS  Google Scholar 

  • Wade CM, Kulbokas EJ 3rd, Kirby AW, Zody MC, Mullikin JC, et al. (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420(6915):574–578

    Article  PubMed  CAS  Google Scholar 

  • Wang SH, Tsai MS, Chiang MF, Li H (2003) A novel NK-type homeobox gene, ENK (early embryo specific NK), preferentially expressed in embryonic stem cells. Gene Expr Patterns 3(1):99–103

    Article  PubMed  CAS  Google Scholar 

  • Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, et al. (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292

    Article  PubMed  CAS  Google Scholar 

  • Youngren KK, Coveney D, Peng X, Bhattacharya C, Schmidt LS, et al. (2005) The ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435:360–364

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Carriero N, Gerstein M (2004) Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet 20(2):62–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Susan Hunter and Martin Evans and Phil Avner for DNA from 129/SvEv and M. spretus, respectively. They also thank Simon Tomlinson for help with Supplemental Fig. 1 and Peter Holland and Austin Smith for their comments on the manuscript. This research was supported by the Biotechnology and Biological Sciences Research Council, the Medical Research Council of the UK, and by a Wellcome Trust VIP award to IC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Chambers.

Additional information

Nucleotide sequence data reported here are available in the GenBank database under accession numbers DQ358089, DQ358090, DQ358091, DQ358092, DQ358093, DQ358094, DQ358095, DQ358096.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, M., Stenhouse, F., Colby, D. et al. Nanog retrotransposed genes with functionally conserved open reading frames. Mamm Genome 17, 732–743 (2006). https://doi.org/10.1007/s00335-005-0131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0131-y

Keywords

Navigation