Skip to main content
Log in

Earliest use of birch bark tar in Northwest China: evidence from organic residues in prehistoric pottery at the Changning site

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The analysis of organic residues in pottery can provide abundant information on the lives of ancient people, including the natural resources consumed, the techniques applied, the functions of pottery, and so on. In this paper, a variety of methods, including FT-IR (Fourier transform infrared spectroscopy), GC–MS (gas chromatography-mass spectrometry), SEM (scanning electron microscopy) and SR-μCT (synchrotron radiation micro-computed tomography), have been employed to characterize the carbonized residues from an amphora, unearthed from the Changning site, Qinghai Province, Northwest China. The pottery residues were identified as birch bark tar, so ancient people in China could have used the particular local plant resources, birch bark, to produce tar as early as the Qijia cultural period (c. 4,000–3,500 bp). The birch bark tar could have been used to make composite tools discovered at the Changning site, and the amphora has probably been used for tar production. This, to our knowledge so far, is the earliest evidence for the use of birch bark tar in China. Due to the special geographical location of the Gansu-Qinghai Region, and the transition of subsistence strategy during the Qijia cultural period, the production and utilization of birch bark tar could not rule out the possibility of western influence, which needs further evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aveling E, Heron C (1998) Identification of birch bark tar at the Mesolithic site of Star Carr. Ancient Biomol 2:69–80

    Google Scholar 

  • Bellamy LJ (1980) The infra-red spectra of complex molecules, 2 edn, vol 2. Chapman and Hall, London and New York

    Book  Google Scholar 

  • Bosquet D, Regert M, Dubois N, Jadin I (2001) Identification de brai de bouleau sur quatre vases du site rubané de Fexhe-le-Haut-Clocher « Podrîl’Cortri». Prem Résult Notae Praehist 21:119–127

    Google Scholar 

  • Charters S, Evershed RP (1997) Simulation experiments for determining the use of ancient pottery vessels: the behaviour of epicuticular leaf wax during boiling of a leafy vegetable. J Archaeol Sci 24:1–7

    Article  Google Scholar 

  • Charters S, Evershed RP, Goad LJ, Heron C, Blinkhorn P (1993) Identification of an adhesive used to repair a Roman jar. Archaeometry 35:91–101

    Article  Google Scholar 

  • Chen D (2003) Chinese adhesives and their application in remote ages. China Hist Mater Sci Technol 24:359–365

    Google Scholar 

  • Chen Z (1994) Phylogeny and phytogeography of the Betulaceae (cont.). Acta Phytotax Sin 32:101–153

    Google Scholar 

  • Cîntă-Pînzaru S, Dehelean CA, Soica C, Culea M, Borcan F (2012) Evaluation and differentiation of the Betulaceae birch bark species and their bioactive triterpene content using analytical FT-vibrational spectroscopy and GC-MS. Chem Cent J 6:67

    Google Scholar 

  • Colombini MP, Giachi G, Modugno F, Ribechini E (2005) Characterisation of organic residues in pottery vessels of the Roman age from Antinoe (Egypt). Microchem J 79:83–90. https://doi.org/10.1016/j.microc.2004.05.004

    Article  Google Scholar 

  • Colombini MP, Modugno F (2009) Organic mass spectrometry in art and archaeology. Wiley, Chichester

    Book  Google Scholar 

  • Copley MS et al (2003) Direct chemical evidence for widespread dairying in prehistoric Britain. Proc Natl Acad Sci USA 100:1,524–1,529. https://doi.org/10.1073/pnas.0335955100

    Article  Google Scholar 

  • Correa-Ascencio M, Evershed RP (2014) High throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. Anal Methods 6:1,330–1,340

    Article  Google Scholar 

  • Correa-Ascencio M, Robertson IG, Cabrera-Cortés O, Cabrera-Castro R, Evershed R (2014) Pulque production from fermented agave sap as a dietary supplement in prehispanic Mesoamerica. Proc Natl Acad Sci USA 111:14,223–14,228. https://doi.org/10.1073/pnas.1408339111

    Article  Google Scholar 

  • Craig OE, Collins MJ (2000) An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture. J Immunol Methods 236:89–97

    Article  Google Scholar 

  • Craig OE, Steele VJ, Fischer A et al (2011) Ancient lipids reveal continuity in culinary practices across the transition to agriculture in Northern Europe. Proc Natl Acad Sci USA 108:17,910–17,915. https://doi.org/10.1073/pnas.1107202108

    Article  Google Scholar 

  • Cui Y, Zheng Z (1994) The chemical composition of the birch bark. J Northeast Forestry Univ 22:53–60

    Google Scholar 

  • Dong G, Jia X, An C, Chen F, Zhao Y, Tao S, Ma M (2012) Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China. Quat Res 77:23–30

    Article  Google Scholar 

  • Dudd SN, Evershed RP (1999a) Evidence for varying patterns of exploitation of animal products in different prehistoric pottery traditions based on lipids preserved in surface and absorbed residues. J Archaeol Sci 26:1,473–1,482

    Article  Google Scholar 

  • Dudd SN, Evershed RP (1999b) Unusual triterpenoid fatty acyl ester components of archaeological birch bark tars. Tetrahedron Lett 40:359–362. https://doi.org/10.1016/s0040-4039(98)02311-9

    Article  Google Scholar 

  • Dunne J, Mercuri AM, Evershed RP, Bruni S, di Lernia S (2016) Earliest direct evidence of plant processing in prehistoric Saharan pottery. Nat Plants 3:16,194

    Article  Google Scholar 

  • Evans K, Heron C (1993) Glue, disinfectant and chewing gum: natural products chemistry in archaeology. Chem Ind 12:446–449

    Google Scholar 

  • Evershed RP (2008) Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry 50:895–924. https://doi.org/10.1111/j.1475-4754.2008.00446.x

    Article  Google Scholar 

  • Evershed RP, Dudd SN, Copley MS et al (2002) Chemistry of archaeological animal fats. Acc Chem Res 35:660–668. https://doi.org/10.1021/Ar000200f

    Article  Google Scholar 

  • Evershed RP, Heron C, Goad LJ (1990) Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography mass spectrometry. Analyst 115:1,339–1,342

    Article  Google Scholar 

  • Evershed RP, Heron C, Goad LJ (1991) Epicuticular wax components preserved in potsherds as chemical indicators of leafy vegetables in ancient diets. Antiquity 65:540–544

    Article  Google Scholar 

  • Evershed RP, Payne S, Sherratt AG et al (2008) Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455:528–531. https://doi.org/10.1038/nature07180

    Article  Google Scholar 

  • Evershed RP, Vaughan SJ, Dudd SN, Soles JS (1997) Fuel for thought? Beeswax in lamps and conical cups from Late Minoan Crete. Antiquity 71:979–985

    Article  Google Scholar 

  • Fu L (2014) Research on yan-shaped pottery steamers. J Natl Mus China 3:6–19

    Google Scholar 

  • Fuchs C, Wahl J (2013) Kaugummi oder Werkstoff? Birkenpechstücke aus der Pfahlbausiedlung Hornstaad-Hörnle am Bodensee. Denkmalpfl Baden-Württemberg 4(2013):240–245

    Google Scholar 

  • Grünberg JM (2002) Middle Palaeolithic birch-bark pitch. Antiquity 76:15–16

    Article  Google Scholar 

  • Han M (2005) Formation of the interlocking belt of agriculture and husbandry and climate change in ancient North China. Archaeology 10:57–68

    Google Scholar 

  • Hansel FA, Evershed RP (2009) Formation of dihydroxy acids from Z-monounsaturated alkenoic acids and their use as biomarkers for the processing of marine commodities in archaeological pottery vessels. Tetrahedron Lett 50:5,562–5,564. https://doi.org/10.1016/j.tetlet.2009.06.114

    Article  Google Scholar 

  • Hennius A, Svensson J, Ölund A, Göthberg H (2005) Kol och tjära—Arkeologi I norra Upplands skogsmarker: Undersokningar for E 4. Upplandsmuseet, Uppsala

    Google Scholar 

  • Heron C, Craig OE, Luquin A, Steele VJ, Thompson A, Piličiauskas G (2015) Cooking fish and drinking milk? Patterns in pottery use in the southeastern Baltic, 3,300–2,400 cal BC. J Archaeol Sci 63:33–43. https://doi.org/10.1016/j.jas.2015.08.002

    Article  Google Scholar 

  • Heron C, Shoda S, Barcons AB et al (2016) First molecular and isotopic evidence of millet processing in prehistoric pottery vessels. Sci Rep 6:38,767

    Article  Google Scholar 

  • Jakucs J, Sándorné Kovács J (2012) Északkelet-magyarországi és északnyugat-romániai középső neolit festett kerámiák festékanyagának azonosítása Fourier-transzformációs Infravörös Spektrofotometriai (FTIR) módszerrel. In: Kreiter A, Petö Ak, Tugya BT (eds) Környezet–Ember–Kultúra. Magyar Nemzeti MúzeumNemzeti Örökségvédelmi Központ, Budapest, pp 307–316

  • James MA et al (2009) High prestige Royal Purple dyed textiles from the Bronze Age royal tomb at Qatna, Syria. Antiquity 83:1,109–1,118

    Article  Google Scholar 

  • Jauch V (1994) Eine römische Teersiederei im antiken Tasgetium-Eschenz. Archéol Suisse 17:111–119

    Google Scholar 

  • Jerkovic I, Marijanovic Z, Gugic M, Roje M (2011) Chemical profile of the organic residue from ancient amphora found in the Adriatic Sea determined by direct GC and GC-MS analysis. Molecules 16:7,936–7,948. https://doi.org/10.3390/molecules16097936

    Article  Google Scholar 

  • Kaal J, Lantes-Suárez O, Martínez Cortizas A, Prieto B, Prieto Martínez MP (2014) How useful is pyrolysis-GC/MS for the assessment of molecular properties of organic matter in archaeological pottery matrix? An exploratory case study from North-West Spain. Archaeometry 56:187–207. https://doi.org/10.1111/arcm.12057

    Article  Google Scholar 

  • Koller J, Baumer U, Mania D (2001) High-tech in the Middle Palaeolithic: neandertal-manufactured pitch identified. Eur J Archaeol 4:385–397

    Article  Google Scholar 

  • Kuzmin YV (2006) Chronology of the earliest pottery in East Asia: progress and pitfalls. Antiquity 80:362–371

    Article  Google Scholar 

  • Li L (2012) A study on animal exploitation of Changning site, Qinghai Province, Northwestern China. Master thesis. Jilin University, Changchun, China

  • Li M, Yang X, Ge Q, Ren X, Wan Z (2013) Starch grains analysis of stone knives from Changning site, Qinghai Province, Northwest China. J Archaeol Sci 40:1,667–1,672

    Article  Google Scholar 

  • Li P, Skvortsov AK (2013) Betulaceae. In: FOCEC (ed) Flora of China. Science Press, Beijing

    Google Scholar 

  • Li S (1991) Compendium of materia medica (Bencao, Gangmu). Shanghai Chinese Classics Publishing House, Shanghai

    Google Scholar 

  • Liu B (2010) From Liuwan Cemetery to the prehistorical archaeological research in Hehuang Region. Sanqing Publishing House, Xi’an

    Google Scholar 

  • Liu X, Shen J, Wang S, Yang X, Tong G, Zhang E (2002) A 16000-year pollen record of Qinghai Lake and its paleoclimate and paleoenvironment. Chin Sci Bull 47:1,931–1,936

    Article  Google Scholar 

  • Lucquin A, March RJ, Cassen S (2007) Analysis of adhering organic residues of two “coupes-à-socles” from the Neolithic funerary site “La Hougue Bie” in Jersey: evidences of birch bark tar utilization. J Archaeol Sci 34:704–710

    Article  Google Scholar 

  • McGovern PE, Glusker DL, Exner LJ (1996) Neolithic resinated wine. Nature 381:480–481

    Article  Google Scholar 

  • Mitkidou S, Dimitrakoudi E, Urem-Kotsou D, Papadopoulou D, Kotsakis K, Stratis JA, Stephanidou-Stephanatou I (2008) Organic residue analysis of Neolithic pottery from North Greece. Microchim Acta 160:493–498

    Article  Google Scholar 

  • Mottram HR, Dudd SN, Lawrence GJ, Stott AW, Evershed RP (1999) New chromatographic, mass spectrometric and stable isotope approaches to the classification of degraded animal fats preserved in archaeological pottery. J Chromatogr A 833:209–221

    Article  Google Scholar 

  • Nieuwenhuyse OP, Roffet-Salque M, Evershed RP, Akkermans PMMG, Russell A (2015) Tracing pottery use and the emergence of secondary product exploitation through lipid residue analysis at Late Neolithic Tell Sabi Abyad (Syria). J Archaeol Sci 64:54–66. https://doi.org/10.1016/j.jas.2015.10.002

    Article  Google Scholar 

  • NWIPB, ECFQ (1997) Flora Qinghaiica, vol 1. Qinghai People’s Publishing House, Xining

    Google Scholar 

  • Oras E, Lucquin A, Lõugas L, Tõrv M, Kriiska A, Craig OE (2017) The adoption of pottery by north-east European hunter-gatherers: evidence from lipid residue analysis. J Archaeol Sci 78:112–119. https://doi.org/10.1016/j.jas.2016.11.010

    Article  Google Scholar 

  • Orsini S, Ribechini E, Modugno F, Klügl J, Di Pietro G, Colombini MP (2015) Micromorphological and chemical elucidation of the degradation mechanisms of birch bark archaeological artefacts. Herit Sci 3:1–11

    Article  Google Scholar 

  • Oudemans TFM, Boon JJ (1991) Molecular archaeology: analysis of charred (food) remains from prehistoric pottery by pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrol 20:197–227. https://doi.org/10.1016/0165-2370(91)80073-h

    Article  Google Scholar 

  • Oudemans TFM, Eijkel GB, Boon JJ (2007) Identifying biomolecular origins of solid organic residues preserved in Iron Age Pottery using DTMS and MVA. J Archaeol Sci 34:173–193. https://doi.org/10.1016/j.jas.2006.04.007

    Article  Google Scholar 

  • Pawlik AF (2004) Identification of hafting traces and residues by scanning electron microscopy and energy-dispersive analysis of X-rays. In: Walker EA, Wenban-Smith F, Healy F (eds) Lithics in Action: papers from the conference lithic studies in the year 2000. Oxbow Books, Oxford, pp 169–179

    Google Scholar 

  • Pietrzak S, Langer JJ (2012) Badania archeometryczne substancji organicznej z krzemiennych grocików z cmentarzyska ludności kultury mogiłowej w Górzycy nad Odrą. Folia Praehist Posnan 17:333–344

    Google Scholar 

  • Poulain M, Baeten J, De Clercq W, De Vos D (2016) Dietary practices at the castle of Middelburg, Belgium: organic residue analysis of 16th- to 17th-century ceramics. J Archaeol Sci 67:32–42. https://doi.org/10.1016/j.jas.2016.01.006

    Article  Google Scholar 

  • QPICRA (2006) Reports about changning site excavated in Qinghai Province China. Cult Herit News 2006:12–20

    Google Scholar 

  • Rao H, Li B, Yang Y, Ma Q, Wang C (2015) Proteomic identification of organic additives in the mortars of ancient Chinese wooden buildings. Anal Methods 7:143–149. https://doi.org/10.1039/C4AY01766H

    Article  Google Scholar 

  • Rao H, Yang Y, Hu X, Yu J, Jiang H (2017) Identification of an Ancient Birch Bark Quiver from a Tang Dynasty (AD 618-907) Tomb in Xinjiang, Northwest China. Econ Bot 71:32–44. https://doi.org/10.1007/s12231-0179369-z

    Article  Google Scholar 

  • Regert M (2004) Investigating the history of prehistoric glues by gas chromatography-mass spectrometry. J Sep Sci 27:244–254. https://doi.org/10.1002/jssc.200301608

    Article  Google Scholar 

  • Regert M (2007) Elucidating pottery function using a multi-step analytical methodology combining infrared spectroscopy, mass spectrometry and chromatographic procedures. In: Barnard H, Eerkens JW (eds) Theory and practice of archaeological residue analysis. Archaeopress, Oxford, pp 61–76

    Google Scholar 

  • Regert M, Colinart S, Degrand L, Decavallas O (2001) Chemical alteration and use of beeswax through time: accelerated ageing tests and analysis of archaeological samples from various environmental contexts. Archaeometry 43:549–569

    Article  Google Scholar 

  • Regert M, Garnier N, Decavallas O, Cren-Olive C, Rolando C (2003a) Structural characterization of lipid constituents from natural substances preserved in archaeological environments. Meas Sci Technol 14:1,620–1,630

    Article  Google Scholar 

  • Regert M, Rolando C (2002) Identification of archaeological adhesives using direct inlet electron ionization mass spectrometry. Anal Chem 74:965–975

    Article  Google Scholar 

  • Regert M, Vacher S (2001) Des adhésifs organiques sur un site de La Tène au Grand Aunay (Sarthe). Archéopages 4:20–29

    Google Scholar 

  • Regert M, Vacher S, Moulherat C, Decavallas O (2003b) Adhesive production and pottery function during the Iron Age at the site of Grand Aunay (Sarthe, France). Archaeometry 45:101–120. https://doi.org/10.1111/1475-4754.00098

    Article  Google Scholar 

  • Reunanen M, Holmbom B, Edgren T (1993) Analysis of archaeological birch bark pitches. Holzforschung 47:175–177

    Article  Google Scholar 

  • Rice PM (1987) Pottery analysis, a sourcebook. The University of Chicago Press, Chicago

    Google Scholar 

  • Roebroeks W, Villa P (2011) On the earliest evidence for habitual use of fire in Europe. Proc Natl Acad Sci USA 108:5,209–5,214

    Article  Google Scholar 

  • Romanus K, Poblome J, Demarcke M, Degryse P, Jacobs P, De Vos D, Waelkens M (2007) Assessing the content of local/regional fabric 4 amphorae from Sagalassos, SW Turkey. In: Poblome J, Monsieur P, Vermeulen F, Waelkens M (eds) From amphorae to modelling the late Roman economy (International ROCT Workshop, 5-6 December 2005, Ghent). FACTA; A Journal of Roman Material Culture Studies, Supplement 1. Pisa-Rome

  • Salque M, Bogucki PI, Pyzel J, Sobkowiak-Tabaka I, Grygiel R, Szmyt M, Evershed RP (2013) Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493:522–525

    Article  Google Scholar 

  • Schrader B (2008) Infrared and Raman spectroscopy: methods and applications. Wiley, Chichester

    Google Scholar 

  • Shi M (1993) The discussion on the origin and distribution of pottery Zeng and Yan. Essays on Archaeological Culture 3. Cultural Relics Press, Beijing

    Google Scholar 

  • Silverstein RM, Webster FX, Kiemle D, Bryce DL (2014) Spectrometric identification of organic compounds. Wiley, Chichester

    Google Scholar 

  • Skibo JM (2013) Understanding pottery function: manuals in archaeological method, theory and technique. Springer, New York

    Book  Google Scholar 

  • Stott AW, Berstan R, Evershed RP (2003) Direct dating of archaeological pottery by compound-specific C-14 analysis of preserved lipids. Anal Chem 75:5,037–5,045. https://doi.org/10.1021/Ac020743y

    Article  Google Scholar 

  • Trąbska J, Wesełucha-Birczyńska A, Zięba-Palus J, Runge MT (2011) Black painted pottery, Kildehuse II, Odense County, Denmark. Spectrochim Acta A Mol Biomol Spectrosc 79:824–830. https://doi.org/10.1016/j.saa.2010.08.068

    Article  Google Scholar 

  • Wang Q (2015) The preliminary discussion of the difference of the livelihood models in river valley areas during Qijia Culture period in Qinghai Province. J Qinghai Normal Univ (Philos Soc Sci) 37:64–69

    Google Scholar 

  • Wei S, Pintus V, Pitthard V, Schreiner M, Song G (2011) Analytical characterization of lacquer objects excavated from a Chu tomb in China. J Archaeol Sci 38:2,667–2,674

    Google Scholar 

  • Wen H (2006) The shift of the plant and animal in China in the historical period. Chongqing Publishing House, Chongqing

    Google Scholar 

  • Wen H, He Y (1979) China’s forest resources distribution in history. Natural Res 2:72–85

    Google Scholar 

  • Wiktorowicz CJ, Arnold B, Wiktorowicz JE, Murray ML, Kurosky A (2017) Hemorrhagic fever virus, human blood, and tissues in Iron Age mortuary vessels. J Archaeol Sci 78:29–39. https://doi.org/10.1016/j.jas.2016.11.009

    Article  Google Scholar 

  • Xie D (2002) Pre-history archaeology in Gansu-Qinghai area. Cultural Relics Press, Beijing

    Google Scholar 

  • Yang J (2004) A comparison of the economic formation in the Eurasian steppes with that in the Great Wall zone in China. Archaeology 11:84–90

    Google Scholar 

  • Yin H (2009) The research of the birch bark culture in Chinese ancient northern minorities. Master thesis. Inner Mongolia University, Huhhot, China

  • Yu X (2006) The birch-bark culture of northern minorities thorough understanding of history, archaeology and ethnology. Manchu Stud 1:113–121

    Google Scholar 

  • Zhang J (2002) The preliminary discussion on bronze Yan in Shang and Zhou Dynasty. Master thesis. Northwest University, Xi'an, China

Download references

Acknowledgements

The authors would like to thank Matthew Collins, Alexandre Lucquin and Shannon Croft from University of York for giving professional comments on the identification of birch bark tar. This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB26000000), the National Natural Science Foundation of China (Grant Nos. 41702186 and 41472145), National Young Top-Notch Talent Support Program in China and Youth Innovation Promotion Association of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Yang.

Additional information

Communicated by J. Kitagawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, H., Wang, Q., Ren, X. et al. Earliest use of birch bark tar in Northwest China: evidence from organic residues in prehistoric pottery at the Changning site. Veget Hist Archaeobot 28, 199–207 (2019). https://doi.org/10.1007/s00334-018-0694-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-018-0694-7

Keywords

Navigation