Skip to main content

Advertisement

Log in

The last hornbeam forests in SW Europe: new evidence on the demise of Carpinus betulus in NW Iberia

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Carpinus betulus L. is a mesic, usually considered late-successional tree widely distributed in Europe, but almost absent from Iberia, where it is generally assumed that disappeared during the coldest stages of the Würm. High-resolution pollen analyses were carried out in 14C dated sediments from a drowned estuary (ria) and a small mountain lake. Carpinus pollen identification was confirmed by comparative light and scanning electron microscopy. Hornbeam dynamics are interpreted using palaeoclimatic reconstructions based on independent proxies (diatoms, chironomids and dinocysts). Our results support that hornbeam declined between ca. 60,000 and ca. 9,000 cal yr bp, when multiproxy evidence suggests a major regional relative sea-level rise. Moreover, chironomid-inferred July temperatures show an increase of more than 6 °C between 15,600 and 10,500 cal yr bp, while freshwater aquatics and diatoms indicate a general tendency towards increasing precipitation and a more oceanic climate. Carpinus survived during the Würm in a variety of habitats in coastal valleys in NW Iberia which had adequate climatic and edaphic conditions. Such habitats might be comparable to the oak-ash, ravine, and hardwood floodplain forests currently existing in other regions of Europe. Large areas of these coastal ecosystems disappeared at the onset of the Holocene, when the sea-level rose. Later hornbeam was apparently unable to compete and expand further inland. Therefore, the sea-level rise combined with the climatically-induced Holocene tree succession and the increasing human impact during the Mid and Late Holocene led to hornbeam progressively becoming a marginal tree in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aizpuru Oiharbide I, Catalán Rodríguez P (1984) Presencia del carpe en la Península Ibérica. An del Jard Bot Madr 41:143–146

    Google Scholar 

  • Allen JRM, Huntley B, Watts WA (1996) The vegetation and climate of northwest Iberia over the last 14,000 years. J Quat Sci 11:125–147

    Google Scholar 

  • André F, Ponette Q (2003) Comparison of biomass and nutrient content between oak (Quercus petraea) and hornbeam (Carpinus betulus) trees in a coppice-with-standards stand in Chimay (Belgium). Ann For Sci 60:489–502

    Google Scholar 

  • Beaudouin C, Suc JP, Escarguel G, Arnaud M, Charmasson S (2007) The significance of pollen signal in present-day marine terrigenous sediments: the example of the Gulf of Lions (western Mediterranean Sea). Geobios 40:159–172

    Google Scholar 

  • Benito Garzón M, Sánchez de Dios R, Sáinz Ollero H (2007) Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30:120–134

    Google Scholar 

  • Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental changes using lake sediments, terrestrial and siliceous indicators, vol 3. Kluwer Academic Publishers, Dordrecht, pp 5–32

    Google Scholar 

  • Birks CJA, Koç N (2002) A high-resolution diatom record of late-Quaternary sea-surface temperatures and oceanographic conditions from the eastern Norwegian Sea. Boreas 31:323–344. https://doi.org/10.1080/030094802320942545

    Google Scholar 

  • Blackmoore S, Steinmann JAJ, Hoen PP, Punt W (2003) Betulaceae and Corylaceae. Rev Palaeobot Palynol 123:71–98

    Google Scholar 

  • Blockley SPE, Lane CS, Hardiman M et al (2012) Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k. Quat Sci Rev 36:2–10

    Google Scholar 

  • Bond G, Showers W, Cheseby M et al (1997) A pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climates. Science 278:1,257–1,266

    Google Scholar 

  • Box EO, Fujiwara K (2013) Vegetation types and their broad—scale distribution. In: van der Maarel E, Franklin J (eds) Vegetation ecology. Wiley, Chichester, pp 455–485

    Google Scholar 

  • Brunet J, Falkengren-Grenip U, Tyler G (1997) Pattern and dynamics of the ground vegetation in south Swedish Carpinus betulus forests: importance of soil chemistry and management. Ecography 20:513–520

    Google Scholar 

  • Burjachs F (1994) Palynology of the Upper Pleistocene and Holocene of the Northeast Iberian Peninsula: Pla de l’Estany (Catalonia). Hist Biol 9:17–33

    Google Scholar 

  • Burjachs F, Pérez-Obiol R, Roure JM, Julià R (1994) Dinámica de la vegetación durante el Holoceno en la isla de Mallorca. In: Mateu I, Dupré M, Güemes J, Burgaz ME (eds) Trabajos de Palinología Básica y Aplicada. Universitat de València, València, pp 199–210

    Google Scholar 

  • Burjachs F, Schulte L (2003) El paisatge vegetal del Penedès entre la prehistoria i el món ntica. In: Guitart J, Palet JM, Prevosti M (eds) Territoris antics a la Mediterrània i a la Cossetània oriental. Generalitat de Catalunya, Barcelona, pp 249–254

    Google Scholar 

  • Campos JA, García-Mijangos I, Herrera M, Loidi J, Biurrum I (2011) Ravine forest (Tilio-Acerion) of the Iberian Peninsula. Plant Biosyst 145:172–179

    Google Scholar 

  • Cappers RTJ, Neef R (2012) Handbook of Plant Palaeoecology. Barkhuis, Groningen

    Google Scholar 

  • Castroviejo S (coord gen) (1986–2012) Flora iberica 1–8, 10–15, 17–18, 21. Real Jardín Botánico, CSIC, Madrid

  • Coart E, van Glabeke S, Petit RJ, van Bockstaele E, Roldán-Ruiz I (2005) Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conserv Genet 6:259–273

    Google Scholar 

  • Costa JC, Lousá M, Capelo J, Espírito Santo MD, Izco Sevillano J, Arsénio P (2000) The coastal vegetation of the Portuguese Divisory Sector: dunes cliffs and low-scrub communities. Finisterra 69:69–93

    Google Scholar 

  • Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (2005) Los bosques Ibéricos. Una interpretación geobotánica. Planeta, Barcelona

    Google Scholar 

  • Dai L, Weng C, Lu J, Mao L (2013) Pollen quantitative distribution in marine and fluvial surface sediments from the northern South China Sea: new insights into pollen transportation and deposition mechanisms. Quat Int 325:136–149

    Google Scholar 

  • De Nascimento L, Willis KJ, Fernández-Palacios JM, Criado C, Whittaker RJ (2009) The long-term ecology of the lost forests of La Laguna, Tenerife (Canary Islands). J Biogeogr 36:499–514

    Google Scholar 

  • Decocq G (2002) Patterns of plant species and community diversity at different organization levels in a forested riparian landscape. J Veg Sci 13:91–106

    Google Scholar 

  • Delgado Vázquez A, Plaza Arregui L (2006) Helechos amenazados de Andalucía. Consejería de Medio Ambiente Junta de Andalucía, Sevilla

    Google Scholar 

  • DeMenocal PB, Ortiz J, Guilderson T, Sarnthein M (2000) Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288:2,198–2,202

    Google Scholar 

  • Desprat S, Sánchez-Goñi MF, McManus JF, Duprat J, Cortijo E (2009) Millennial-scale climatic variability between 340,000 and 270,000 years ago in SW Europe: evidence from a NW Iberian margin pollen sequence. Clim Past 5:53–72

    Google Scholar 

  • Desprat S, Sánchez-Goñi MF, Turon JL et al (2005) Is vegetation responsible for glacial inception during periods of muted insolation changes? Quat Sci Rev 24:1,361–1,374

    Google Scholar 

  • Diniz F (1993) Aspectos da vegetação e do clima de formações quaternárias entre Óbidos e Peniche. In: Aleixandre T, Pérez González A (eds) El Cuaternario en España y Portugal: Actas 2ª Reunión del Cuaternario Ibérico. Instituto Tecnológico Geominero de España, Madrid, pp 337–344

    Google Scholar 

  • EEA (2007) European forest types Categories and types for sustainable forest management reporting and policy Technical Report 9/2006. European Environment Agency

  • Ellenberg H (1963) Vegetation Mitteleuropas mit den Alpen in kausaler, dynamischer und historischer Sicht. In: Walter H (ed) Einführung in die Phytologie, vol 4. Ulmer, Stuttgart

    Google Scholar 

  • European Commission (2013) Interpretation Manual of European Union Habitats, version EUR 28. Nature and Biodiversity Directorate-General for the Environment, Brussels

    Google Scholar 

  • Eynaud F, Londeix L, Penaud A, Sanchez-Goñi MF, Oliveira D, Desprat S, Turon JL (2016) Dinoflagellate cyst population evolution throughout past interglacials: key features along the Iberian margin and insights from the new IODP Site U1385 (Exp 339). Glob Planet Change 136:52–64

    Google Scholar 

  • Fernández-Palacios JM, de Nascimento L, Otto R, Delgado JD, García-del-Rey E, Arévalo JR, Whittaker RJ (2011) A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. J Biogeogr 38:226–246

    Google Scholar 

  • Florschütz F, Menéndez Amor J (1971) Palynology of a thick Quaternary succession in Southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 10:233–264

    Google Scholar 

  • Franco-Múgica F, García-Antón M, Maldonado Ruíz J, Morla C, Sainz-Ollero H (2001) The Holocene history of pinus forests in the Spanish Northern Meseta. Holocene 11:343–358

    Google Scholar 

  • Franco-Múgica F, García-Antón M, Maldonado Ruiz J, Morla Juaristi C, Sainz Ollero H (2005) Ancient pine forest on inland dunes in the Spanish Northern Meseta. Quat Res 63:1–14

    Google Scholar 

  • García-Antón M, Franco-Múgica F, Morla-Juaristi C, Maldonado-Ruiz J (2011) The biogeographical role of Pinus forests on the Northern Spanish Meseta: a new Holocene sequence. Quat Sci Rev 30:757–768

    Google Scholar 

  • García-Moreiras I (2017) Cambios climáticos y ambientales durante la transición Pleistoceno-Holoceno Nuevos datos palinológicos procedentes de las Rías Baixas (NO Ibérico). PhD thesis Universidade Vigo, Vigo

  • García-Moreiras I, Sánchez JM, Muñoz Sobrino C (2015) Modern pollen and non-pollen palynomorph assemblages of salt marsh and subtidal environments from the Rıa de Vigo (NW Iberia). Rev Palaeobot Palynol 219:157–171

    Google Scholar 

  • Gavin DG, Fitzpatrick MC, Gugger PF et al (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol 204:37–54. https://doi.org/10.1111/nph.12929

    Google Scholar 

  • Geburek T, Hiess K, Litschauer R, Milasowszky N (2012) Temporal pollen pattern in temperate trees: expedience or fate? Oikos 121:1,603–1,612

    Google Scholar 

  • Gómez-Orellana L (2002) El último ciclo glaciar interglaciar en el Litoral del NW Ibérico: Dinámica climática y paisajística. PhD thesis Escola Politécnica Superior, Universidade de Santiago de Compostela, Lugo

  • Gómez-Orellana L, Ramil-Rego P, Muñoz Sobrino C (2007) The Würm in NW Iberia, a pollen record from area Longa (Galicia). Quat Res 67:438–452

    Google Scholar 

  • Gómez-Orellana L, Ramil-Rego P, Muñoz Sobrino C (2013) The response of vegetation at the end of the last glacial period (MIS 3 and MIS 2) in littoral areas of NW Iberia. Boreas 42:729–744. https://doi.org/10.1111/j1502-3885201200310x

    Google Scholar 

  • Gónzález-Sampériz P (2004) Evolución paleoambiental del sector central de la cuenca del Ebro durante el Pleistoceno. Superior y Holoceno Instituto Pirenaico de Ecología, CSIC, Zaragoza

    Google Scholar 

  • González-Sampériz P, Leroy SAG, Carrión JS et al (2010) Steppes, savannahs, forests and phytodiversity reservoirs during the Pleistocene in the Iberian Peninsula. Rev Palaeobot Palynol 162:427–457

    Google Scholar 

  • Granja HM, de Groot TAM, Costa AL (2008) Evidence for Pleistocene wet aeolian dune and interdune accumulation, S. Pedro da Maceda, north-west Portugal. Sedimentology 55:1,203–1,226. https://doi.org/10.1111/j1365-3091200700943x

    Google Scholar 

  • Grant KM, Rohling EJ, Bronk Ramsey C et al (2014) Sea-level variability over five glacial cycles. Nat Commun 5:5,076. https://doi.org/10.1038/ncomms6076

    Google Scholar 

  • Grimm EC (1990–2015) TILIA and TILIAGRAPH: PC spreadsheets and graphics software for pollen data, INQUA Commission for the study of the Holocene Working Group. Data Handl Method Newslett 4:5–7

  • Heiri O, Brooks SJ, Birks HJB, Lotter AF (2011) A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat Sci Rev 30:3,445–3,456

    Google Scholar 

  • Heiri O, Brooks SJ, Renssen H et al (2014) Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat Commun 5:4,914. https://doi.org/10.1038/ncomms5914

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Google Scholar 

  • Hendrick RL (2001) Forest Types and Classification. In: Evans J (ed) The forests handbook, vol 1. Blackwell Science, Oxford, pp 23–76

    Google Scholar 

  • Hernández L, Rubiales JM, Morales-Molino C, Romero F, Sanz C, Gómez Manzaneque F (2011) Reconstructing forest history from archaeological data: a case study in the Duero basin assessing the origin of controversial forests and the loss of tree populations of great biogeographical interest. For Ecol Man 261:1,178–1,187

    Google Scholar 

  • Heshmati GA (2007) Vegetation characteristics of four ecological zones of Iran International. J Plant Prod 2:215–224

    Google Scholar 

  • Hill M, Preston CD, Roy DB (2004) Attributes of British and Irish plants: status, size, life history, geography and habitats natural environment research council centre for ecology and hydrology. Raven Marketing Group, Cambridgeshire

    Google Scholar 

  • Hultberg T (2015) The long-term history of temperate broadleaves in Southern Sweden. PhD thesis Faculty of Forest Sciences Southern Swedish Forest Research Centre, Alnarp

  • Huntley B, Birks HJB (1983) An Atlas of past and present pollen maps for Europe: 0–13,000 years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Iriarte-Chiapusso MJ (2013) El estudio paleopalinológico de la cueva de Arlanpe (Lemoa, Bizkaia). Kob Excav Arqueol Bizk 4:57–72

    Google Scholar 

  • Iriarte-Chiapusso MJ, Munoz Sobrino C, Gomez-Orellana L et al (2016) Reviewing the Lateglacial-Holocene transition in NW Iberia: a palaeoecological approach based on the comparison between dissimilar regions. Quat Int 403:211–236

    Google Scholar 

  • Iriarte-Chiapusso MJ, Muñoz Sobrino C, Gomez-Orellana L, Ramil-Rego P (2006) Dinámica del paisaje en la reserva de la biosfera del Urdaibai durante el holoceno. In: Cardiñanos Aguirre JA, Ibabe Lujanbio A, Lozano Valencia P, Meaza Rodríguez G, Onaindía Olalde M (eds) III congreo Español de biogeografía. Comunicaciones Universidad del País Vasco, Vitoria-Gasteiz, pp 113–118

    Google Scholar 

  • Iriarte-Chiapusso MJ, Muñoz Sobrino C, Ramil-Rego P, Rodríguez Guitián M (2001) Análisis palinológico de la turbera de San Mamés de Abar (Burgos). In: Fombella MA, Fernández D, Valencia RM (eds) Palinología: diversidad y aplicaciones. Secretariado de Publicaciones Universidad de León, León, pp 87–93

    Google Scholar 

  • Iriarte-Chiapusso MJ, Ramil-Rego P, Muñoz Sobrino C (2003) El registro postglaciar de dos turberas situadas en el norte de la provincia de Burgos. Polen 13:55–68

    Google Scholar 

  • Jambrina-Enríquez M, Rico M, Moreno A, Leira M, Bernárdez P, Prego R, Recio C, Valero-Garcés BL (2014) Timing of deglaciation and postglacial environmental dynamics in NW Iberia: the Sanabria Lake record. Quat Sci Rev 94:136–158. https://doi.org/10.1016/jquascirev201404018

    Google Scholar 

  • Jensen LU, Lawesson JE, Balslev H, Forchhammer MC (2004) Predicting the distribution of Carpinus betulus in Denmark with Ellenberg’s climate quotient. Nord J Bot 23:57–67

    Google Scholar 

  • Kavgaci A, Čarni A, Bariş Tecimen HB, Özalp G (2011) Diversity of floodplain forests in the Igneada region (NW Thrace—Turkey). Hacquetia 10:73–93

    Google Scholar 

  • Klimo E, Hager H (eds) (2001) The floodplain forests in Europe current situation and perspectives. European Forest Institute Research report 10. Brill, Leiden

    Google Scholar 

  • Knollová I, Chytrý M (2004) Oak-hornbeam forests of the Czech Republic: geographical and ecological approaches to vegetation classification. Preslia 76:291–311

    Google Scholar 

  • Košir P, Casavecchia S, Čarni A, Škvorc Ž, Zivkovic L, Biondi E (2012) Ecological and phytogeographical differentiation of oak-hornbeam forests in southeastern Europe. Plant Biosyst. https://doi.org/10.1080/112635042012717550

  • Košir P, Čarni A, Marinšek A, Šilic U (2013) Floodplain forest communities along the Mura River (NE Slovenia). Acta Bot Croat 72:71–95

    Google Scholar 

  • Landi M, Angiolini C (2008) Habitat characteristics and vegetation context of Osmunda regalis L at the southern edge of its distribution in Europe. Bot Helv 118:45–57

    Google Scholar 

  • Laurent J-M, Bar-Hen A, François L, Ghislain M, Cheddadi R (2004) Refining vegetation simulation models: from plant functional types to bioclimatic affinity groups of plants. J Veg Sci 15:739–746

    Google Scholar 

  • Lawesson JE (2000) Danish deciduous forest types. Plant Ecol 151:199–221

    Google Scholar 

  • Le Duc MG, Havill DC (1998) Competition between Quercus petraea and Carpinus betulus in an ancient wood in England: seedling survivorship. J Veg Sci 9:873–880

    Google Scholar 

  • Leroy SAG, Arpe K (2007) Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J Biogeogr 34:2,115–2,128

    Google Scholar 

  • Leroy SAG, Kakroodi AA, Kroonenberg S, Lahijani HAK, Alimohammadian H, Nigarov A (2013) Holocene vegetation history and sea level changes in the SE corner of the Caspian Sea: relevance to SW Asia climate. Quat Sci Rev 70:28–47

    Google Scholar 

  • López García P (1987) Datos polínicos del holoceno de Navarra y Aragón. In: Civis J, Valle M (eds) Actas del VI simposio de la Asociación de Palinólogos de Lengua Española. Asociación de Palinólogos en Lengua Española, Salamanca, pp 315–320

    Google Scholar 

  • López García P (1993) Estudios sobre la flora. Cuad Arqueol Univ Navar 1:161–165

    Google Scholar 

  • Magri D, Di Rita F, Aranbarri J, Fletcher W, González-Sampériz P (2017) Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quat Sci Rev 163:23–55

    Google Scholar 

  • Márquez AL, Real R, Vargas JM, Salvo AE (1997) On identifying common distribution patterns and their causal factors: a probabilistic method applied to pteridophytes in the Iberian Peninsula. J Biogeogr 24:613–631

    Google Scholar 

  • Martín-Chivelet J, Belén Muñoz-García M, Edwards RL, Turrero MJ, Ortega AI (2011) Land surface temperature changes in Northern Iberia since 4,000 year bp, based on δ13C of speleothems. Glob Planet Change 77:1–12

    Google Scholar 

  • Martínez-Carreño N (2015) Análisis multidisciplinar de las acumulaciones de metano en relación con la arquitectura estratigráfica y los cambios del nivel del mar durante el Cuaternario en la Ría de Vigo. PhD thesis Universidade Vigo, Vigo

  • Martínez-Carreño N, García-Gil S (2013) The Holocene gas system of the Ría de Vigo (NW Spain): factors controlling the location of gas accumulations, seeps and pockmarks. Mar Geol 344:82–100

    Google Scholar 

  • Mary G, Medus J, Delibrias G (1975) Le Quaternaire de la cote Asturienne (Espagne). Bulletin de l’Association française pour l’Etude. du Quaternaire 1:13–23

    Google Scholar 

  • Menéndez Amor J (1968) Estudio esporo-polínico de una turbera en el valle de la Nava (Provincia de Burgos). Boletín de la Real Sociedad Española de Historia Natural. Secc Geol 66:35–39

    Google Scholar 

  • Menéndez Amor J, Florschütz F (1963) Sur les éléments steppiques dans la végétation quaternaire de l’Espagne. Boletín de la Real Sociedad Española de Historia Natural. Secc Geol 61:121–133

    Google Scholar 

  • Mindáš J, Škvarenina J, Kunca V (2007) Impact of global climate change on forest ecosystems in Slovakia—general overview. For J 53:227–235

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, London

    Google Scholar 

  • Morales-Molino C, García-Antón M (2014) Vegetation and fire history since the last glacial maximum in an inland area of the western Mediterranean Basin (Northern Iberian Plateau, NW Spain). Quat Res 81:63–77

    Google Scholar 

  • Morales-Molino C, García-Antón M, Postigo-Mijarra JM, Morla C (2013) Holocene vegetation, fire and climate interactions on the westernmost fringe of the Mediterranean Basin. Quat Sci Rev 59:5–17

    Google Scholar 

  • Muñoz Sobrino C (2001) Cambio climático y dinámica del paisaje en las montañas del noroeste de la Península ibérica. PhD thesis Universidade de Santiago de Compostela, Lugo

  • Muñoz Sobrino C, García-Gil S, Iglesias J, Martínez Carreño N, Ferreiro da Costa J, Díaz Varela RA, Judd A (2012) Environmental change in the Ría de Vigo, NW Iberia, since the mid-Holocene: new palaeoecological and seismic evidence. Boreas 41:578–601

    Google Scholar 

  • Muñoz Sobrino C, García-Moreiras I, Castro Y, Martínez Carreño N, de Blas E, Fernández Rodríguez C, Judd A, García-Gil S (2014) Climate and anthropogenic factors influencing an estuarine ecosystem from NW Iberia: new high resolution multiproxy analyses from San Simón Bay (Ría de Vigo). Quat Sci Rev 93:11–33. https://doi.org/10.1016/jquascirev201403021

    Google Scholar 

  • Muñoz Sobrino C, Garcıa-Moreiras I, Martínez-Carreño N et al (2016) Reconstruction of the environmental history of a coastal insular system using shallow marine records: the last three millennia of the Cíes Islands (Ría de Vigo, NW Iberia). Boreas 45:729–753. https://doi.org/10.1111/bor12178

    Google Scholar 

  • Muñoz Sobrino C, Heiri O, Hazekamp M, van der Velden D, Kirilova EP, García-Moreiras I, Lotter AF (2013) New data on the Lateglacial period of SW Europe: a high resolution multiproxy record from Laguna de la Roya (NW Iberia). Quat Sci Rev 80:58–77

    Google Scholar 

  • Muñoz Sobrino C, Ramil-Rego P, Gómez-Orellana L (2003) La vegetacón postglaciar en la vertiente meridional del Macizo del Mampodre (Sector Central de la Cordillera Cantábrica). Polen 13:31–44

    Google Scholar 

  • Muñoz Sobrino C, Ramil-Rego P, Gómez-Orellana L (2004) Vegetation of the Lago de Sanabria area (NW Iberia) since the end of the Pleistocene: a palaeoecological reconstruction on the basis of two new pollen sequences. Veget Hist Archaeobot 13:1–22

    Google Scholar 

  • Muñoz Sobrino C, Ramil-Rego P, Gómez-Orellana L (2007) Late Würm and early Holocene in the mountains of northwest Iberia: biostratigraphy, chronology and tree colonization. Veget Hist Archaeobot 16:223–240

    Google Scholar 

  • Muñoz Sobrino C, Ramil-Rego P, Gómez-Orellana L, Díaz Varela RA (2005) Palynological data on major Holocene climatic events in NW Iberia. Boreas 34:381–400

    Google Scholar 

  • Muñoz Sobrino C, Ramil-Rego P, Gómez-Orellana L, Ferreiro da Costa J, Díaz Varela RA (2009) Climatic and human effects on the post-glacial dynamics of Fagus sylvatica L in NW Iberia. Plant Ecol 203:317–340

    Google Scholar 

  • Muñoz Sobrino C, Ramil-Rego P, Rodríguez Guitian MA (2001) Vegetation in the mountains of northwest Iberia during the last glacial-interglacial transition. Veget Hist Archaeobot 10:7–21

    Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2005) Atlas climático digital de la Península Ibérica metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra

    Google Scholar 

  • Paal J, Rannik R, Jeletsky EM, Prieditis N (2007) Floodplain forests in Estonia: typological diversity and growth conditions. Folia Geobot 42:383–400

    Google Scholar 

  • Pearman PB, Randin CF, Broennimann O et al (2008) Prediction of plant species distributions across six millennia. Ecol Lett 11:357–369

    Google Scholar 

  • Peñalba MC (1989) Dynamique de vegetation tardiglaciaire et holocene du centre-nord de l’Espagne d’après l’analyse pollinique. PhD thesis, Universite d’Aix-Marseille III

  • Peñalba MC (1994) The history of the Holocene vegetation in northern Spain from pollen analysis. J Ecol 82:815–832

    Google Scholar 

  • Pérez-Obiol R, Yll EI, Pantaleón-Cano J, Roure JM (2000) Evaluación de los impactos antrópicos y cambios climáticos en el paisaje vegetal de las Islas Baleares durante los últimos 8000 años. In: Guerrero VM, Gornés S (eds) Colonización humana en ambientes insulares: Interacción con el medio y adaptación cultural. Universitat de le Illes Balears, Palma, pp 73–98

    Google Scholar 

  • Picchi S (2008) Management of Natura 2000 habitats: 2250 *Coastal dunes with Juniperus spp. Technical report 06/24. European Commission

  • Pinto PE, Gégout JC (2005) Assessing the nutritional and climatic response of temperate tree species in the Vosges Mountains. Ann For Sci 62:761–770

    Google Scholar 

  • Poldini L, Vidali M, Ganis P (2011) Riparian Salix alba: Scrubs of the Po lowland (N-Italy) from an European perspective. Plant Biosyst 145:132–147

    Google Scholar 

  • Pons A, Reille M (1988) The Holocene and Upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeogr Palaeoclimatol Palaeoecol 66:243–263

    Google Scholar 

  • Pott R (1997) Invasion of beech and establishment of beech forests in Europe. Ann Bot 55:27–58

    Google Scholar 

  • Prentice C, Guiot J, Huntley B, Jolly D, Cheddadi R (1996) Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 Ka. Clim Dyn 12:185–194

    Google Scholar 

  • Punt W, Malotaux M (1984) Cannabaceae, Moraceae and Urticaceae. Rev Palaeobot Palynol 42:23–44

    Google Scholar 

  • Quintanilla LG, Amigo J, Pangua E, Pajarón S (2002) Análisis biogeográfico de la pteridoflora de la sierra de la Capelada (La Coruña, España). Lazaroa 23:17–24

    Google Scholar 

  • Quintanilla LG, Pajarón S, Pangua E, Amigo J (2007) Allozyme variation in the sympatric ferns Culcita macrocarpa and Woodwardia radicans at the northern extreme of their ranges. Plant Syst Evolut 263:135–144

    Google Scholar 

  • Ramil-Rego P, Muñoz Sobrino C, Rodríguez Guitián MA, Gómez-Orellana L (1998a) Differences in the vegetation of the North Iberian peninsula during the last 16,000 years. Plant Ecol 138:41–62

    Google Scholar 

  • Ramil-Rego P, Rodríguez Guitian MA, Muñoz Sobrino C (1998b) Sclerophyllous vegetation dynamics in the north of the Iberian peninsula during the last 16,000 years. Glob Ecol Biogeogr Lett 7:335–351

    Google Scholar 

  • Ramil-Rego P, Rodríguez Guitián MA, Muñoz Sobrino C, Gómez-Orellana L (2000) Some considerations about the postglacial history and recent distribution of Fagus sylvatica L in the NW Iberian Peninsula. Folia Geobot 35:241–271

    Google Scholar 

  • Rasmussen SO, Andersen KK, Svensson AM et al (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:D06102. https://doi.org/10.1029/2005JD006079

    Google Scholar 

  • Rasmussen SO, Bigler M, Blockley SP et al (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28. https://doi.org/10.1016/j.quascirev.2014.09.007

  • Rebele F (2013) Differential succession towards woodland along a nutrient gradient. Appl Veg Sci 16:365–378

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887. https://doi.org/10.2458/azu_js_rca5516947

    Google Scholar 

  • Renberg I, Hellberg T (1982) The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio 11:30–33

    Google Scholar 

  • Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:410–413

    Google Scholar 

  • Rodríguez Guitián MA, Ramil-Rego P (2008) Fitogeografía de Galicia (NW Ibérico): análisis histórico y nueva propuesta corológica. Recursos Rurais 4:19–50

    Google Scholar 

  • Rubiales JM, Ezquerra J, Muñoz Sobrino C, Génova MM, Gil L, Ramil-Rego P, Gómez Manzaneque F (2012) Holocene distribution of woody taxa at the westernmost limit of the Circumboreal/Mediterranean boundary: evidence from wood remains. Quat Sci Rev 33:74–86

    Google Scholar 

  • Ruiz-Zapata B, Andrade Olalla A, Gil García MJ, Dorado Valiño M, Atienza Ballano M (1996) Evolución de la vegetación en los últimos 6,000 años en los sectores central y oriental del Sistema Central Español. Rev Esp Paleontol \({\text {N}}^{\underline{\text{o}}}\) Extraordin 288–298

  • Samartin S, Heiri O, Joos F, Renssen H, Franke J, Brönnimann S, Tinner W (2017) Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat Geosci 10:207–212

    Google Scholar 

  • Sánchez-Goñi MF (1992) Analyse palynologique de sites préhistoriques du Pays Basque: premiers résultats pour les grottes de Lezetxiki et Urtiaga. In: Cearreta A, Ugarte RM (eds) The Late Quaternary in the western Pyrenean region. Universidad del Pais Vasco, Bilbao, pp 207–231

    Google Scholar 

  • Sanchez-Goñi MF (1996) Vegetation and sea level changes during the Holocene in the estuary of the Bidasoa (Southern part of the bay of Biscay). Quaternaire 7:207–219. https://doi.org/10.3406/quate19962073

    Google Scholar 

  • Sánchez-Goñi MF, Eynaud F, Turon JL, Shackleton NJ (1999) High resolution palynological record of the Iberian margin: direct land–sea correlation for the Last Interglacial complex. Earth Planet Sci Lett 171:123–137

    Google Scholar 

  • Sánchez-Goñi MF, Landais A, Fletcher WJ, Naughton F, Desprat S, Duprat J (2008) Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat Sci Rev 27:1,136–1,151

    Google Scholar 

  • Sánchez-Goñi MF, Loutre MF, Crucifix M et al (2005) Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception (122–110 ka): data-model comparison. Earth Planet Sci Lett 231:111–130

    Google Scholar 

  • Schnitzler A (1994) European alluvial hardwood forests of large floodplains. J Biogeogr 21:605–623

    Google Scholar 

  • Siebel HN, Bouwma IM (1998) The occurrence of herbs and woody juveniles in a hardwood floodplain forest in relation to flooding and light. J Veg Sci 9:623–630

    Google Scholar 

  • Sikkema R, Caudullo G, de Rigo D (2016) Carpinus betulus in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publication Office of the European Union, Luxembourg, pp 74–75

    Google Scholar 

  • Stancliffe RPW (2002) Microforaminiferal linings. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphical Palynologists Foundation, Dallas, pp 373–379

    Google Scholar 

  • Svenning JC (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol Lett 6:646–653

    Google Scholar 

  • Svenning JC, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96:1,117–1,127

    Google Scholar 

  • Svenning JC, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Google Scholar 

  • Tinner W, Lotter AF (2006) Holocene expansions of Fagus sylvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549

    Google Scholar 

  • Truxa C (2012) Community ecology of moths in floodplain forests of Eastern Austria. PhD Thesis, Universität Wien, Wien

  • Valle-Hernández M, Rivas-Carballo M, Lucini M, Ortiz JE, Torres T (2003) Interpretación paleoecológica y paleoclimática del tramo superior de la turbera de Padul (Granada, España). Polen 13:85–95

    Google Scholar 

  • Van Geel B (2003) Non pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. vol 3: terrestrial, algal and siliceous indicators. Kluwer Academic, Dordrecht, pp 99–120

    Google Scholar 

  • Vinther BM, Clausen HB, Johnsen SJ et al (2006) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophysl Res 111:D13102. https://doi.org/10.1029/2005JD00 6921

    Google Scholar 

  • Vitasse Y, Delzon S, Dufrêne E, Pontailler J-Y, Louvet J-M, Kremer A, Michalet R (2009) Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agr For Meteorol 149:735–744

    Google Scholar 

  • Vukelic J, Baricevic D (2004) The association of spreading elm and narrow-leaved ash (Fraxino-Ulmetum laevis Slav 1952) in floodplain forests of the Podravina and Podunavlje. Hacquetia 3:49–60

    Google Scholar 

  • Wanner H, Mercolli L, Grosjean M, Ritz SP (2015) Holocene climate variability and change; a data-based review. J Geol Soc 172:254–263. https://doi.org/10.1144/jgs2013e101

    Google Scholar 

  • Wolin JA, Stone JR (2010) Diatoms as indicators of water-level change in freshwater lakes. In: Stoermer EF, Smol JP (eds) The diatoms applications to the environmental and earth sciences. Cambridge University Press, Cambridge, pp 174–185

    Google Scholar 

  • Yll EI, Pérez-Obiol R, Pantaleón-Cano J, Roure JM (1997) Palynological evidence for climatic change and human activity during the holocene in Minorca (Balearic Islands). Quat Res 48:339–347

    Google Scholar 

  • Zonneveld KAF, Marret F, Versteegh GJM et al (2013) Atlas of modern dinoflagellate cyst distribution based on 2405 datapoints. Rev Palaeobot Palynol 191:1–197

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Spanish Ministry of Education and Science under research projects CGL2012-33584 (co-financed with EFRD funds) and HAR2014-53536-P, the Xunta de Galicia GRC2015/020, and the Prehistory Consolidated Research Team (IT-622-13). I. García-Moreiras was funded by the Xunta de Galicia Ph D fellowship program (PRE/2013/404). We sincerely thank anonymous reviewers for all their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Castor Muñoz Sobrino.

Additional information

Communicated by J.-L. de Beaulieu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz Sobrino, C., García-Moreiras, I., Gómez-Orellana, L. et al. The last hornbeam forests in SW Europe: new evidence on the demise of Carpinus betulus in NW Iberia. Veget Hist Archaeobot 27, 551–576 (2018). https://doi.org/10.1007/s00334-017-0654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-017-0654-7

Keywords

Navigation