Vegetation History and Archaeobotany

, Volume 26, Issue 6, pp 627–637 | Cite as

Optimal sampling design and minimal effort for soil charcoal analyses considering the soil type and forest history

  • Thomas Feiss
  • Hélène Horen
  • Boris Brasseur
  • Jonathan Lenoir
  • Jérôme Buridant
  • Guillaume Decocq
Original Article

Abstract

Soil charcoal analysis is of particular interest for reconstructing and interpreting past forest landscapes. However, whether soil charcoal spectra are representative of past forest communities or not remains unclear. Here we sampled three types of soils from two ancient forests in North France (six sites in total), using a single 1.5 × 1.5 m pit vs. several auger cores regularly distributed over a 1,000 m2 area (i.e. stand scale). Soil charcoals were extracted to compute specific anthracomasses (SA) and, for one of the two ancient forests studied, to determine taxonomic composition. We compared the two sampling methods (pit vs. auger) according to SA distribution within a pit and between auger cores using Moran’s I index. To determine the minimal sampling effort according to taxonomic richness, we used rarefaction curves. Except in the upper horizons of the podzol pits, within-pits SA distribution showed no spatial structure as a plausible effect of soil disturbance and biological activity. At the stand scale, between-augers SA distribution did not show spatial pattern. The pit method retrieved more species than the auger one, but the sampling effort was sometimes insufficient to be representative and has to be adapted according to the anthracomass. A minimal sampling effort of 500–600 charcoals was required to reach a full picture of the soil charcoal assemblage, corresponding to a volume of 30–60 litres depending on the sampling method. Historical land use and site management, together with the type of soil, should be taken into account when designing a sampling strategy for soil charcoals. The sampling design and effort should be adapted to the goal of the study, the biological activity of the soils and the expected density of charcoals.

Keywords

Anthracology Rarefaction curve Sampling effort Spatial autocorrelation Additive partitioning of diversity 

Notes

Acknowledgements

We thank Claire Delhon and Marie-Claude Bal-Serin for their help in identifying charcoals; Roger Langhor and Jean-Luc Dupouey for their advice during fieldwork; the “Office national des Forêts” for facilitation during fieldwork. The authors also thank the two anonymous referees for their helpful comment on the initial manuscript. This paper is part of TF’s PhD thesis, which was granted by the French “Ministère de l’Enseignement et de la Recherche”.

Supplementary material

334_2017_624_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3938 KB)

References

  1. Baker KL, Langenheder S, Nicol GW, Ricketts D, Killham K, Campbell CD, Prosser JI (2009) Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies. Soil Biol Biochem 41:2,292–2,298Google Scholar
  2. Bal MC, Rendu C, Ruas MP, Campmajo P (2010) Paleosol charcoal: reconstructing vegetation history in relation to agro-pastoral activities since the Neolithic. A case study in the Eastern French Pyrenees. J Archaeol Sci 37:1,785–1,797Google Scholar
  3. Barthélémy L (1970) Recherches biogéographiques dans le Laonnois. Equisse d’histoire de la vegetation. Université Paris – Nanterre, ParisGoogle Scholar
  4. Bélanger N, Carcaillet C, Padbury GA, Harvey-Schafer AN, van Rees KJC (2014) Periglacial fire and trees in a continental setting of central Canada, Upper Pleistocene. GeoBiology 12:109–118CrossRefGoogle Scholar
  5. Bergaglio M, Talon B, Médail F (2006) Histoire et dynamique des forêts de l’ubac du massif des Maures au cours des derniers 8000 ans. Forêt Méditer 27:3–16Google Scholar
  6. Björnstad ON (2013) Package ‘ncf’: spatial nonparametric covariance functions, V1.1-5. http://cran.r-project.org/web/packages/ncf/ncf.pdf. Accessed 30 Oct 2013
  7. Braadbaart F, Poole I (2008) Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. J Archaeol Sci 35:2,434–2,445Google Scholar
  8. Buridant J (2008) Le premier choc énergétique: la crise forestière dans le nord du Bassin Parisien, début XVIIIe—début XIXe siècle. Université de Paris IV—Sorbonne, ParisGoogle Scholar
  9. Bush MB, Silman MR, McMichael C, Saatchi S (2008) Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Phil Trans R Soc B 363:1,795–1,802Google Scholar
  10. Carcaillet C (1998) A spatially precise study of Holocene fire history, climate and human impact within the Maurienne valley, North French Alps. J Ecol 86:384–396CrossRefGoogle Scholar
  11. Carcaillet C (2001) Soil particles reworking evidences by AMS 14 C dating of charcoal. Comptes Rendus l’Acad Sci Ser IIA Earth Planet Sci 332:21–28Google Scholar
  12. Carcaillet C, Talon B (1996) Aspects taphonomiques de la stratigraphie et de la datation de charbons de bois dans les sols: exemple de quelques sols des Alpes. Géogr Phys Quat 50:233–244Google Scholar
  13. Carcaillet C, Thinon M (1996) Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne Valley (North French Alps): methodology and preliminary data. Rev Palaeobot Palynol 91:399–416CrossRefGoogle Scholar
  14. Carcaillet C, Barakat HN, Panaïtos C, Loisel R (1997) Fire and late-Holocene expansion of Quercus ilex and Pinus pinaster on Corsica. J Veg Sci 8:85–94CrossRefGoogle Scholar
  15. Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67CrossRefGoogle Scholar
  16. Chauhan RP (2014) Role of earthworms in soil fertility and factors affecting their population dynamics: a review. Int J Res 1:642–649Google Scholar
  17. Clarke K, Lewis M, Ostendorf O (2011) Additive partitioning of rarefaction curves: removing the influence of sampling on species-diversity in vegetation surveys. Ecol Indic 1:132–139CrossRefGoogle Scholar
  18. Cunill R, Soriano JM, Bal MC, Pèlachs A, Pérez-Obiol R (2012) Holocene treeline changes on the south slope of the Pyrenees: a pedoanthracological analysis. Veget Hist Archaeobot 21:373–384CrossRefGoogle Scholar
  19. Cunill R, Soriano JM, Bal MC, Pèlachs A, Rodriguez JM, Pérez-Obiol R (2013) Holocene high-altitude vegetation dynamics in the Pyrenees: a pedoanthracology contribution to an interdisciplinary approach. Quat Int 289:60–70CrossRefGoogle Scholar
  20. Delhon C, Thiébault S (2005) The migration of beech (Fagus sylvatica L.) up the Rhone: the Mediterranean history of a ‘mountain’ species. Veget Hist Archaeobot 14:119–132CrossRefGoogle Scholar
  21. Dutoit T, Thinon M, Talon B, Buisson E, Alard D (2009) Sampling soil wood charcoals at a high spatial resolution: a new methodology to investigate the origin of grassland plant communities. J Veg Sci 20:349–358CrossRefGoogle Scholar
  22. Ewald J (2003) The calcareous riddle: why are there so many calciphilous species in the Central European Flora? Folia Geobot 38:357–366CrossRefGoogle Scholar
  23. Feiss T, Horen H, Brasseur B, Buridant J, Gallet-Moron E, Decocq G (2016) Historical ecology of lowland forests: does pédoanthracologie support historical and archaeological data? Quat Int. doi: 10.1016/j.quaint.2016.10.029 Google Scholar
  24. Finke PA, Vanwalleghem T, Opolot E, Poesen J, Deckers J (2013) Estimating the effect of the tree uprooting on variation of soil horizon depth by confronting pedogenetic simulations to measurements in a Belgian loess area. J Geophys Res Earth Surf 118:2,124–2,139Google Scholar
  25. Fleming PA, Anderson H, Prendergast AS, Bretz MR, Valentine LE, Hardy GES (2014) Is the loss of Australian digging mammals contributing to a deterioration in ecosystem function? Mamm Rev 44:94–108CrossRefGoogle Scholar
  26. Fortin MJ, Drapeau P, Legendre P (1989) Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83:209–222CrossRefGoogle Scholar
  27. Fréjaville T, Carcaillet C, Curt T (2013) Calibration of charcoal production from trees biomass for soil charcoal analyses in subalpine ecosystems. Quat Int 289:16–23CrossRefGoogle Scholar
  28. Gabet EJ, Reichman OJ, Seabloom EW (2003) The effects of bioturbation on soil processes and sediment transport. Annu Rev Earth Planet Sci 31:249–263CrossRefGoogle Scholar
  29. Gavin DG, Brubaker LB, Lertzman KP (2003) Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates. Ecology 84:186–201CrossRefGoogle Scholar
  30. Goepp S (2007) Origine, histoire et dynamique des Hautes-Chaumes du massif vosgien. Déterminismes environnementaux et actions de l’Homme. Université Louis Pasteur-Strasbourg I, StrasbourgGoogle Scholar
  31. Hilscher A, Heister K, Siewert C, Knicker H (2009) Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org Geochem 40:332–342CrossRefGoogle Scholar
  32. Hole FD (1981) Effects of animals on soil. Geoderma 25:75–112CrossRefGoogle Scholar
  33. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  34. Horen H, Buridant J, Gallet-Moron E, Brasseur B, Feiss T, Héraude M, Rassat S, Montoya C, Burban-Col V (2015) Relation entre les structures archéologiques identifiées sur un levé LiDAR et la typologie des sols du massif forestier de Compiègne (Nord de la France). Rev Nord Hors Sér Collect Art Archéol 23:85–94Google Scholar
  35. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for interpolation and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1,451–1,456Google Scholar
  36. Jacquiot C, Robin AM, Bedeneau M (1973) Reconstitution d’un ancient peuplement forestier en forêt de Fontainebleau par l’étude anatomique de charbons de bois et leur datation par le 14C. Bull Soc Bot Fr 120:231–234CrossRefGoogle Scholar
  37. Kane VR, Lutz JA, Cansler CA, Povak NA, Churchill DJ, Smith DF, Kane JT, North MP (2015) Water balance and topography predict fire and forest structure patterns. For Ecol Manag 338:1–13CrossRefGoogle Scholar
  38. Langhor R (2000) Tree sway turbation of soils as observed on archaeologicial sites in the sandy area of northern Flanders, Belgium. Pedologie-Themata 8:123–129Google Scholar
  39. Malrain F, Gaudefroy S, Gransar F (2005) La Protohistoire récente: IIIème siècle—1ère moitié du premier siècle avant notre ère. Rev Archéol Picardie 3:127–167CrossRefGoogle Scholar
  40. Muukkonen P, Häkkinen M, Mäkipää R (2009) Spatial variation in soil carbon in the organic layer of managed boreal forest soil—implications for sampling design. Environ Monit Assess 158:67–76CrossRefGoogle Scholar
  41. Ohlson M, Tryterud E (2000) Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. Holocene 10:519–525CrossRefGoogle Scholar
  42. Ohlson M, Dahlberg B, Økland T, Brown KJ, Halvorsen R (2009) The charcoal carbon pool in boreal forest soils. Nat Geosci 2:692–695CrossRefGoogle Scholar
  43. Payette S, Delwaide A, Schaffhauser A, Magnan G (2012) Calculating long-term fire frequency at the stand scale from charcoal data. Ecosphere 3:1–16 (art59) CrossRefGoogle Scholar
  44. Pernaud JM (1997) Paléoenvironnements végétaux et sociétés à l’Holocène dans le nord du Bassin Parisien. Université de Paris I Panthéon—Sorbonne, ParisGoogle Scholar
  45. Plue J, Hermy M (2012) Consistent seed bank spatial structure across semi-natural habitats determines plot sampling. J Veg Sci 23:505–516CrossRefGoogle Scholar
  46. Poschlod P, Baumann A (2010) The historical dynamics of calcareous grasslands in the central and southern Franconian Jurassic mountains: a comparative pedoanthracological and pollen analytical study. Holocene 20:13–23CrossRefGoogle Scholar
  47. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  48. Ritchie JC (1995) Current trends in studies of long-term plant community dynamics. New Phytol 130:469–494CrossRefGoogle Scholar
  49. Robin V, Talon B, Nelle O (2013) Pedoanthracological contribution to forest naturalness assessment. Quat Int 289:5–15CrossRefGoogle Scholar
  50. Robin V, Bork HR, Nadeau MJ, Nelle O (2014) Fire and forest history of central European low mountain forest sites based on soil charcoal analysis: the case of the eastern Harz. Holocene 24:35–47CrossRefGoogle Scholar
  51. Rossen J, Olson J (1985) The controlled carbonization and archaeological analysis of SE US wood charcoals. J Field Archaeol 12:445–456Google Scholar
  52. Saey T, van Meirvenne M, De Pue J, van De Vijver E, Delefortrie S (2014) Reconstructing mole tunnels using frequency-domain ground penetrating radar. Appl Soil Ecol 80:77–83CrossRefGoogle Scholar
  53. Schaetzl RJ, Burns SF, Johnson DL, Small TW (1989) Tree uprooting: review of impacts on forest ecology. Vegetatio 79:165–176CrossRefGoogle Scholar
  54. Scheu S (1987) The role of substrate feeding earthworms (Lumbricidae) for bioturbation in a beechwood soil. Oecologia 72:192–196CrossRefGoogle Scholar
  55. Schweingruber FH (1990a) Anatomy of European woods. Haupt, BernGoogle Scholar
  56. Schweingruber FH (1990b) Microscopic wood anatomy. Swiss Federal Institute for Forest, Snow and Landscape Research, BirmensdorfGoogle Scholar
  57. Talon B (2010) Reconstruction of Holocene high-altitude vegetation cover in the French southern Alps: evidence from soil charcoal. Holocene 20:35–44CrossRefGoogle Scholar
  58. Talon B, Carcaillet C, Thinon M (1998) Études pédoanthracologiques des variations de la limite supérieure des arbres au cours de l’Holocene dans les alpes françaises. Géogr Phys Quat 52:195–208Google Scholar
  59. Talon B, Payette S, Filion L, Delwaide A (2005) Reconstruction of the long-term fire history of an old-growth deciduous forest in Southern Québec, Canada, from charred wood in mineral soils. Quat Res 64:36–43CrossRefGoogle Scholar
  60. Taylor AH, Skinner CN (2003) Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecol Appl 13:704–719CrossRefGoogle Scholar
  61. Théry-Parisot I, Chabal L, Ntinou M, Bouby L, Carré A (2010) Du bois aux charbons de bois: approche expérimentale de la combustion. In: Théry-Parisot I, Chabal L, Costamagno S (eds) Taphonomie des résidus organiques brûlés et la structure de combustion en milieu archéologique. P@lethnologie 2, Toulouse, pp 81–93Google Scholar
  62. Thinon M (1978) Pedoanthracologie: une nouvelle méthode d’analyse phytochronologique depuis le Néolithique. Comptes Rendues hebd séances de l’Acad Sci 287:1,203–1,206Google Scholar
  63. Thinon M (1992) L’analyse pédoanthracologique. Aspects méthodologiques et applications. Université d’Aix-Marseille, MarseilleGoogle Scholar
  64. Touflan P, Talon B (2009) Spatial reliability of soil charcoal analysis: the case of Subalpine forest soils. Ecoscience 16:23–27CrossRefGoogle Scholar
  65. Touflan P, Talon B, Walsh K (2010) Soil charcoal analysis: a reliable tool for spatially precise studies of past forest dynamics: a case study in the French southern Alps. Holocene 20:45–52CrossRefGoogle Scholar
  66. Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: pedological, geological and ecological implications of soil bioturbation. Earth Sci Rev 97:257–272CrossRefGoogle Scholar
  67. Xie H, Zhuang X, Bai Z, Qi H, Zhang H (2006) Isolation of levoglucosan-assimilating microorganisms from soil and an investigation of their levoglucosan kinases. World J Microb Biot 22:887–892CrossRefGoogle Scholar
  68. Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the Boreal forest. OIKOS 77:10–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS-UPJV)Université de Picardie Jules VerneAmiens Cedex 1France

Personalised recommendations