Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries


We study critical surfaces for a surface energy which contains the squared \(L^2\) norm of the difference of the mean curvature H and the spontaneous curvature \(c_o\), coupled to the elastic energy of the boundary curve. We investigate the existence of equilibria with \(H\equiv -c_o\). When \(c_o \geqslant 0\), we characterize those cases where the infimum of this energy is finite for topological annuli, and we find the minimizer in the cases that it exists. Results for topological disks are also given.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Asgari, M., Biria, A.: Free energy of the edge of an open lipid bilayer based on the interactions of its constituent molecules. Int. J. Nonlinear Mech. 76, 135–143 (2015)

    Article  Google Scholar 

  2. Babich, M., Bobenko, A.: Willmore tori with umbilic lines and minimal surfaces in hyperbolic space. Duke Math. J. 72, 141–185 (1993)

    MathSciNet  Article  Google Scholar 

  3. Brander, D., Dorfmeister, J.F.: The Björling problem for non-minimal constant mean curvature surfaces. Commun. Anal. Geom. 18–1, 171–194 (2010)

    Article  Google Scholar 

  4. Biria, A., Fried, E.: Buckling of a soap film spanning a flexible loop resistant to bending and twisting. Proc. R. Soc. A 470, 20140368 (2014)

    MathSciNet  Article  Google Scholar 

  5. Biria, A., Fried, E.: Theoretical and experimental study of the stability of a soap film spanning a flexible loop. Int. J. Eng. Sci. 94, 86–102 (2015)

    MathSciNet  Article  Google Scholar 

  6. Biria, A., Maleki, M., Fried, E.: Continuum theory for the edge of an open lipid bilayer. Adv. Appl. Mech. 46, 1–68 (2013)

    Article  Google Scholar 

  7. Boal, D.H., Rao, M.: Topology changes in fluid membranes. Phys. Rev. A 46, 3037 (1992)

    Article  Google Scholar 

  8. Capovilla, R., Chryssomalakos, C., Guven, J.: Hamiltonians for curves. J. Phys. A: Math. Gen. 35, 6571–6587 (2002)

    MathSciNet  Article  Google Scholar 

  9. Capovilla, R., Guven, J., Santiago, J.: Lipid membranes with an edge. Phys. Rev. E 66, 021607 (2002)

    Article  Google Scholar 

  10. Delaunay, C.: Sur la surface de revolution dont la courbure moyenne est constante. J. Math. Pures Appl. 16, 309–320 (1841)

    Google Scholar 

  11. Euler, L.: De Curvis Elasticis. In: Methodus Inveniendi Lineas Curvas Maximi Minimive Propietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattissimo Sensu Accepti, Additamentum 1 Ser. 1 24, Lausanne, (1744)

  12. Gibaud, T., Kaplan, C.N., Sharma, P., Zakhary, M.J., Ward, A., Oldenbourg, R., Meyer, R.B., Kamien, R.D., Powers, T.R., Dogic, Z.: Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes. Proc. Natl. Acad. Sci. USA 114–17, 3376–3384 (2017)

    Article  Google Scholar 

  13. Giomi, L., Mahadevan, L.: Minimal surfaces bounded by elastic lines. Proc. R. Soc. A 468, 1851–1864 (2012)

    MathSciNet  Article  Google Scholar 

  14. Heinz, E.: Über die existenz einer flache konstanter mittlerer krummung bei vorgegebener berandung. Math. Ann. 127, 258–287 (1954)

    MathSciNet  Article  Google Scholar 

  15. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Zeit. Naturfor. C 28, 693–703 (1973)

    Article  Google Scholar 

  16. Hildebrandt, S.: On the Plateau problem for surfaces of constant mean curvature. Commun. Pure Appl. Math. 23, 97–114 (1970)

    MathSciNet  Article  Google Scholar 

  17. Hopf, H.: Differential Geometry in the Large, Seminar Lectures New York University 1946 and Stanford University 1956, vol. 1000. Springer, New York (2003)

  18. Langer, J., Singer, D.A.: Knotted elastic curves in \({\mathbb{R}}^3\). J. Lond. Math. Soc. (2) 30, 512–520 (1984)

    Article  Google Scholar 

  19. Langer, J., Singer, D.A.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38, 605–618 (1986)

    MathSciNet  Article  Google Scholar 

  20. Litherland, R.A.: Signatures of iterated torus knots. In: Fenn, R. (ed.) Topology of Low-Dimensional Manifolds. Lecture Notes in Mathematics, vol. 722. Springer, Berlin (1979)

  21. Maleki, M., Fried, E.: Stability of discoidal high-density lipoprotein particles. Soft Matter 9–42, 9991–9998 (2013)

    Article  Google Scholar 

  22. Mathematica Stack Exchange,

  23. Morrey Jr., C.B.: Multiple Integrals in the Calculus of Variations. Springer, New York (2009)

    Google Scholar 

  24. Murasugi, K.: Knot Theory and Its Applications. Birkhäuser, Boston (1996)

    Google Scholar 

  25. Nitsche, J.C.: Stationary partitioning of convex bodies. Arch. Ration. Mech. Anal. 89–1, 1–19 (1985)

    MathSciNet  Article  Google Scholar 

  26. Palmer, B.: Uniqueness theorems for Willmore surfaces with fixed and free boundaries. Indiana Univ. Math. J. 49–4, 1581–1601 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Palmer, B., Pámpano, A.: Minimal surfaces with elastic and partially elastic boundary. Proc. A R. Soc. Edinb. (2020)

  28. Patnaik, U.: Volume Constrained Douglas Problem and the Stability of Liquid Bridges between Two Coaxial Tubes, Dissertation, University of Toledo, USA (1994)

  29. Rózycki, B., Lipowsky, R.: Spontaneous curvature of bilayer membranes from molecular simulations: asymmetric lipid densities and asymmetric adsorption. J. Chem. Phys. 142–5, 054101 (2015)

    Article  Google Scholar 

  30. Tu, Z.C.: Compatibility between shape equation and boundary conditions of lipid membranes with free edges. J. Chem. Phys. 132–8, 084111 (2010)

    Article  Google Scholar 

  31. Tu, Z.C.: Geometry of membranes. J. Geom. Symmetry Phys. 24, 45–75 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Tu, Z.C., Ou-Yang, Z.C.: A geometric theory on the elasticity of bio-membranes. J. Phys. A: Math. Gen. 37, 11407–11429 (2004)

    MathSciNet  Article  Google Scholar 

  33. Tu, Z.C., Ou-Yang, Z.C.: Lipid membranes with free edges. Phys. Rev. E 68, 061915 (2003)

    Article  Google Scholar 

  34. Tu, Z.C., Ou-Yang, Z.C.: Recent theoretical advances in elasticity of membranes following Helfrich’s spontaneous curvature model. Adv. Colloid Interface Sci. 208, 66–75 (2014)

    Article  Google Scholar 

  35. Walani, N., Torres, J., Agrawal, A.: Anisotropic spontaneous curvatures in lipid membranes. Phys. Rev. E 89–6, 062715 (2014)

    Article  Google Scholar 

  36. Zhou, X.: An integral case of the axisymmetric shape equation of open vesicles with free edges. Int. J. Nonlinear Mech. 106, 25–28 (2018)

    Article  Google Scholar 

Download references


The second author has been partially supported by MINECO-FEDER grant PGC2018-098409-B-100, Gobierno Vasco grant IT1094-16 and by Programa Posdoctoral del Gobierno Vasco, 2018. He would also like to thank the Department of Mathematics and Statistics of Idaho State University for its warm hospitality.

Author information



Corresponding author

Correspondence to Álvaro Pámpano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Eliot Fried.

Appendix A: First Variation Formula

Appendix A: First Variation Formula

In this appendix, we will compute the first variation formula of the total energy E. Most of the calculations below are well known and they are included for completeness.

Let \(\delta X\) be a smooth \(\mathbf{R }^3\) valued map on \(\Sigma \) which we consider as a variation field, i.e., the linear term of a deformation \(X_\epsilon :=X+\epsilon \, \delta X+{\mathcal {O}}(\epsilon ^2)\).

Although for functionals with geometric character (i.e., invariant under changes of parameterization) only normal variations are usually considered, for surfaces with boundary it is essential to use variations having normal as well as tangential components. In general, the boundary is not invariant under tangential variations and, hence, computing the first variation formula only for normal variations leads to a loss of valuable information.

We decompose \(\delta X\) as \(V+\psi \nu \) with V tangent to the surface. At times we will denote with “dot” derivatives with respect to the variation parameter \(\epsilon \), i.e., \(\delta f={\dot{f}}\) for an \(\epsilon \) dependent function f on \(\Sigma \).

We first consider the case \(V\equiv 0\). A straightforward calculation gives the variation for the normal field as

$$\begin{aligned} {{{\dot{\nu }}}}=-\nabla \psi \,, \end{aligned}$$

where we denote the surface gradient operator by \(\nabla \).

We next compute the variation for the components metric tensor \(g_{ij}\) with respect to a locally defined frame field \(\{e_1, e_2\}\) which is orthonormal for the metric induced by \(X_0\equiv X\), i.e., \(g_{ij}(0)=\delta _{ij}\),

$$\begin{aligned} {\dot{g}}_{ij}= & {} \delta \left( X_i\cdot X_j\right) ={\dot{X}}_i\cdot X_j+X_i\cdot {\dot{X}}_j=\left( \psi \nu \right) _i\cdot X_j+X_i\cdot \left( \psi \nu \right) _j\\= & {} 2\psi \nu _i\cdot X_j=-2\psi L_{ij}\,, \end{aligned}$$

where \(L_{ij}:=-X_i\cdot \nu _j\) are the components of the second fundamental form of the surface. Recall that this tensor is symmetric, i.e., \(L_{ij}=L_{ji}\).

The induced surface measure on \(\Sigma \) is given by \(d\Sigma =g^{1/2}\left( e_1^*\wedge e_2^*\right) \), where \(g:=\det (g_{ij})\) and \(\{e_1^*,e_2^*\}\) is the dual basis. From this and the calculation above, one easily obtains

$$\begin{aligned} \delta d\Sigma =-2H\psi d\Sigma \,. \end{aligned}$$

We now consider the variation for the second fundamental form of the surface \(\left( L_{ij}\right) \):

$$\begin{aligned} {\dot{L}}_{ij}= & {} - \delta \left( X_i\cdot \nu _j\right) =- {\dot{X}}_i\cdot \nu _j-X_i\cdot {{{\dot{\nu }}}}_j=-\left( \psi \nu \right) _i\cdot \nu _j-X_i\cdot \left( -\nabla \psi \right) _j\\= & {} -\psi \nu _i\cdot \nu _j+\psi _{,ij}=-\psi L_{ik}L_{kj}+\psi _{,ij}\,. \end{aligned}$$

From the previous two calculations, we obtain, using \({\dot{g}}^{ij}=-{\dot{g}}_{ij}\),

$$\begin{aligned} {\dot{H}}= & {} \delta \left( \frac{1}{2}g^{ij}L_{ij}\right) = \frac{1}{2}\left( {\dot{g}}^{ij}L_{ij}+g^{ij}{\dot{L}}_{ij}\right) \\= & {} \frac{1}{2}\left( 2\psi L_{ij}L_{ij}+g^{ij}\psi _{,ij}-\psi L_{ij}L_{ij}\right) =\frac{1}{2}\left( \Delta \psi +\Vert d\nu \Vert ^2\psi \right) , \end{aligned}$$

where \(\Vert d\nu \Vert ^2=L_{ij}L_{ij}=4H^2-2K\) is the square of the norm of the second fundamental form.

In order to compute the pointwise variation for the Gaussian curvature K, we choose the frame so that, in addition to being orthonormal, \(L_{ij}=k_i\delta _{ij}\) holds. Here, \(k_1\) and \(k_2\) are the principal curvatures of the surface. Then we obtain

$$\begin{aligned} {\dot{K}}= & {} \delta \left( \frac{L_{11}L_{22}-L_{12}^2}{g}\right) ={\dot{L}}_{11}k_2+k_1{\dot{L}}_{22}-{\dot{g}}K\\= & {} k_2\psi _{,11}+k_1\psi _{,22}-\left( k_2k_1^2+k_1k_2^2\right) \psi +4HK\psi \\= & {} k_2\psi _{,11}+k_1\psi _{,22}+2HK\psi \,. \end{aligned}$$

The Codazzi equations with respect to this frame are:

$$\begin{aligned} e_2(k_1)=:k_{1,2}= & {} -\left( k_1-k_2\right) \nabla _1e_2\cdot e_1\,,\\ e_1(k_2)=:k_{2,1}= & {} \left( k_1-k_2\right) \nabla _2e_1\cdot e_2\,. \end{aligned}$$

Define \(A:=\left( d\nu +2H\,Id\right) \nabla \psi = k_2\psi _{1}e_1+k_1\psi _{2}e_2\). Below we use the notation \(\psi _{i,j}\) to denote \(e_j(\psi _i)\) and as before \(\psi _{,ij}\) denotes the (ij) component of the Hessian tensor. Using the Codazzi equations, we have that the divergence \(\nabla \cdot \) of A is given by

$$\begin{aligned} \nabla \cdot A= & {} \nabla _i\left( k_2\psi _{1}e_1+k_1\psi _{2}e_2\right) \cdot e_i\\= & {} \left( k_2\psi _1\right) _1+\left( k_1\psi _2\right) _2+k_2\psi _1\nabla _2e_1\cdot e_2+k_1\psi _2\nabla _1e_2\cdot e_1\\= & {} k_{2,1}\psi _1+k_2\psi _{1,1}+k_{1,2}\psi _2+k_1\psi _{2,2}+k_2\psi _1\nabla _2e_1\cdot e_2+k_1\psi _2\nabla _1e_2\cdot e_1\\= & {} \psi _1\left( k_1-k_2\right) \nabla _2e_1\cdot e_2+k_2\psi _{1,1}-\psi _2\left( k_1-k_2\right) \nabla _1e_2\cdot e_1\\&+k_1\psi _{2,2}+k_2\psi _1\nabla _2e_1\cdot e_2+k_1\psi _2\nabla _1e_2\cdot e_1\\= & {} \psi _1k_1\nabla _2e_1\cdot e_2+k_2\psi _{1,1}+\psi _2k_2\nabla _1e_2\cdot e_1+k_1\psi _{2,2}\\= & {} k_1\psi _{,22}+k_2\psi _{,11}\,. \end{aligned}$$

Comparing this with the expression for \({\dot{K}}\) above, we obtain

$$\begin{aligned} {\dot{K}}=\nabla \cdot \left( \left[ d\nu +2H\, Id\right] \nabla \psi \right) +2HK\psi \,. \end{aligned}$$

For the case of a variation tangential to the surface, i.e., \(\delta X=V\), it is clear that \({\dot{H}}=\nabla H\cdot V\), \(\dot{K}=\nabla K\cdot V\) and \(\delta d\Sigma =\left( \nabla \cdot V\right) d\Sigma \), where \(\nabla \cdot V\) denotes the divergence of V.

We are now in a position to compute the variation for the Helfrich energy ( Helfrich (1973))

$$\begin{aligned} {\mathcal {H}}[\Sigma ]=\int _\Sigma a\left( H+c_o\right) ^2\,\mathrm{d}\Sigma \,. \end{aligned}$$

For \(\delta X=\psi \nu +V\), integrating by parts we obtain

$$\begin{aligned} \delta {\mathcal {H}}[\Sigma ]= & {} \int _\Sigma 2\left( H+c_o\right) {\dot{H}}\,\mathrm{d}\Sigma +\int _\Sigma \left( H+c_o\right) ^2\delta (\mathrm{d}\Sigma )\\= & {} \int _\Sigma 2\left( H+c_o\right) \left( \frac{1}{2}\left[ \Delta \psi +(4H^2-2K)^2\psi \right] +\nabla H\cdot V \right) \mathrm{d}\Sigma \\&+\int _\Sigma \left( H+c_o\right) ^2 \left( -2H\psi +\nabla \cdot V\right) \mathrm{d}\Sigma \\= & {} \int _\Sigma \left( H+c_o\right) \left( \Delta \psi +2(H^2-K-c_oH)\psi \right) +\nabla \cdot \left[ (H+c_o)^2V\right] \mathrm{d}\Sigma \\= & {} \int _\Sigma \left[ \Delta (H+c_o)+2(H+c_o)(H^2-K-c_oH) \right] \psi \,\mathrm{d}\Sigma \\&+\oint _{\partial \Sigma } \left( H+c_o\right) \partial _n\psi - \partial _n\left( H+c_o\right) \psi +\left( H+c_o\right) ^2V\cdot n\,\mathrm{d}s\,. \end{aligned}$$

In the last line, we have used Green’s Second Identity.

Similarly, for \(\delta X=\psi \nu +V\) the variation for the total Gaussian curvature is given by

$$\begin{aligned} \delta \left( \int _\Sigma K\,\mathrm{d}\Sigma \right)= & {} \int _\Sigma {\dot{K}}\,\mathrm{d}\Sigma +K\,\delta (\mathrm{d}\Sigma )\\= & {} \int _\Sigma \left( \nabla \cdot \left( \left[ \mathrm{d}\nu +2H\, Id\right] \nabla \psi \right) +\nabla K\cdot V+K\nabla \cdot V\right) d\Sigma \\= & {} \oint _{\partial \Sigma } \left( \left[ d\nu +2H\, Id\right] \nabla \psi +K V\right) \cdot n\,\mathrm{d}s\\= & {} \oint _{\partial \Sigma } \left( \kappa _n\partial _n\psi -\tau _g\psi '+K V\cdot n\right) \mathrm{d}s\,, \end{aligned}$$

where in the third line we have used the Divergence Theorem.

Finally, to compute the first variation formula of the bending energy of the boundary we need to know the pointwise variation of the squared curvature. For an arbitrary parameter t, we have

$$\begin{aligned} \delta \left( \kappa ^2\right)= & {} \delta \left( T'\cdot T'\right) =\delta \left( \frac{T_t}{\Vert C_t\Vert }\cdot \frac{T_t}{\Vert C_t\Vert }\right) =2\delta \left( \frac{T_t}{\Vert C_t\Vert }\right) \cdot T'\\= & {} 2\left( {\dot{T}}\right) '\cdot T'-2\kappa ^2 T\cdot \left( {\dot{C}}\right) '=2T' \cdot \left( {\dot{C}}\right) ''-4\kappa ^2 T\cdot \left( {\dot{C}}\right) ', \end{aligned}$$

since \({\dot{T}}=\left[ \left( {\dot{C}}\right) '\right] ^\perp \) and, hence, \(\left( {\dot{T}}\right) '=\left( {\dot{C}}\right) ''-T'\cdot \left( {\dot{C}}\right) '-T\cdot \left( {\dot{C}}\right) ''\). Next, from the induced measure on \(\partial \Sigma \), we directly obtain \(\delta (ds)=T\cdot \left( {\dot{C}}\right) 'ds\). Combining both things we get

$$\begin{aligned} \delta \left( \oint _{\partial \Sigma }\left[ \alpha \kappa ^2+\beta \right] ds\right)= & {} \oint _{\partial \Sigma } \alpha \delta \left( \kappa ^2\right) ds+\left( \alpha \kappa ^2+\beta \right) \delta (\mathrm{d}s)\\= & {} \oint _{\partial \Sigma } \left( 2\alpha T'\cdot \left[ {\dot{C}}\right] ''-\left[ 3\alpha \kappa ^2-\beta \right] T\cdot \left[ {\dot{C}}\right] '\right) \mathrm{d}s\\= & {} \oint _{\partial \Sigma }\left( 2\alpha T'''+\left[ (3\alpha \kappa ^2-\beta )T\right] '\right) \cdot {\dot{C}}\,\mathrm{d}s\,, \end{aligned}$$

where in the last equality we have integrated by parts.

The same variations have been obtained using different techniques in Biria et al. (2013) and Tu and Ou-Yang (2004), to mention a couple. For the boundary energy see also Appendix of Langer and Singer (1986).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palmer, B., Pámpano, Á. Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries. J Nonlinear Sci 31, 23 (2021).

Download citation


  • Helfrich energy
  • Bending energy
  • Energy minimization

Mathematics Subject Classification

  • 49Q10