Skip to main content
Log in

Dynamics of Nonconstant Steady States of the Sel’kov Model with Saturation Effect

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we deal with Sel’kov model with saturation law which has been applied to numerous problems in chemistry and biology. We will study the stability of the unique constant steady state, existence and nonexistence of nonconstant steady states of such models. In particular, we prove that Turing pattern may occur when the saturation coefficient is small but will not occur when the coefficient becomes large. Therefore for a Sel’kov model with saturation law, it is the saturation law that determines the formation of spatial patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cameron, J.B.: Spectral collocation and path-following methods for reaction–diffusion equations in one and two space dimensions. Ph.D. thesis. J. Mater. Chem. 3, 975–978 (1994)

    Google Scholar 

  • Davidson, F.A., Rynne, B.P.: A priori bounds and global existence of solutions of the steady-state Sel’kov model. Proc. R. Soc. Edinb. Sect. A 130, 507–516 (2000)

    Article  Google Scholar 

  • Dutt, A.K.: Turing pattern amplitude equation for a model glycolytic reaction–diffusion system. J. Math. Chem. 48, 507–516 (2010)

    Article  MathSciNet  Google Scholar 

  • Dutt, A.K.: Amplitude equation for a diffusion–reaction system: the reversible Sel’kov model. AIP Adv. 2, 37–60 (2012)

    Article  Google Scholar 

  • Engelhardt, R.: Modelling pattern formation in reaction diffusion systems, Denmark, Department of Chemistry Laboratory III, H.C.Ørsted Institute University of Copenhagen (1994)

  • Gilbarg, D., Trudinger, N.S.: Hopf bifurcation analysis in the 1-D Lengyel–Epstein reaction–diffusion model. J. Math. Anal. Appl. 366, 473–485 (2010)

    Article  MathSciNet  Google Scholar 

  • Guo, G.H., Li, B.F., Wei, M.H., Wu, J.H.: Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction–diffusion model. J. Math. Anal. Appl. 391, 265–277 (2012)

    Article  MathSciNet  Google Scholar 

  • Guo, G.H., Li, B.F., Lin, X.L.: Hopf bifurcation in spatially homogeneous and inhomogeneous autocatalysis models. Comput. Math. Appl. 67, 151–163 (2014)

    Article  MathSciNet  Google Scholar 

  • Han, W., Bao, Z.H.: Hopf bifurcation analysis of a reaction–diffusion Sel’kov system. J. Math. Anal. Appl. 356, 633–641 (2009)

    Article  MathSciNet  Google Scholar 

  • Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  Google Scholar 

  • Jang, J., Ni, W.M., Tang, M.: Global bifurcation and structure of Turing patterns in the 1-D Lengyel–Epstein model. J. Dyn. Differ. Eqn. 16, 297–320 (2004)

    Article  MathSciNet  Google Scholar 

  • Jiang, J.F., Shi, J.P.: Dynamics of a reaction–diffusion system of autocatalytic chemical reaction. Discrete Cont. Dyn. Syst. 21, 245–258 (2008)

    Article  MathSciNet  Google Scholar 

  • Lieberman, G.M.: Bounds for the steady-state Sel’kov model for arbitrary p in any number of dimensions. SIAM J. Math. Anal. 36, 1400–1406 (2005)

    Article  MathSciNet  Google Scholar 

  • López-Gómez, J., Eilbeck, J.C., Molina, M., Duncan, K.N.: Structure of solution manifolds in a strongly coupled elliptic system. J. Numer. Anal. 29, 405–428 (1992)

    Article  MathSciNet  Google Scholar 

  • Morimoto, K.: On the shape of stationary solutions to a chemotaxis model with saturation. Nonlinear Anal. 99, 95–115 (2014)

    Article  MathSciNet  Google Scholar 

  • Ni, W.M., Tang, M.: Turing patterns in the Lengyel–Epstein system for the CIMA reactions. Trans. Am. Math. Soc. 357, 3953–3969 (2005)

    Article  MathSciNet  Google Scholar 

  • Peng, R.: Qualitative analysis of steady states to the Sel’kov model. J. Differ. Equ. 241, 386–398 (2007)

    Article  Google Scholar 

  • Peng, R., Wang, M.X., Yang, M.: Positive steady-state solutions of the Sel’kov model. Math. Comput. Model. 44, 945–951 (2006)

    Article  Google Scholar 

  • Peng, R., Shi, J.P., Wang, M.X.: On stationary patterns of a reaction-diffusion model with autocatalysis saturation law. Nonlinearity 21, 1471–1488 (2008)

    Article  MathSciNet  Google Scholar 

  • Schütze, J., Wolf, J.: Spatio-temporal dynamics of glycolysis in cell layers, a mathematical model. Biosystems 99, 104–108 (2010)

    Article  Google Scholar 

  • Sel’kov, E.E.: Self-oscillations in glycolysis. Eur. J. Biochem. 4, 79–86 (1968)

    Article  Google Scholar 

  • Turing, A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. 237, 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  • Wang, M.X.: Non-constant positive steady-states of the Sel’kov model. J. Differ. Equ. 190, 600–620 (2003)

    Article  Google Scholar 

  • Wei, M., Wu, J.H., Guo, G.H.: Steady state bifurcations for a glycolysis model in biochemical reaction. Nonlinear Anal. Real World Appl. 22, 155–175 (2015)

    Article  MathSciNet  Google Scholar 

  • Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MathSciNet  Google Scholar 

  • Zhou, J.: Spatiotemporal pattern formation of a diffusive bimolecular model with autocatalysis and saturation law. Comput. Math. Appl. 66, 2003–2018 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the editor and the anonymous reviewers for their valuable comments and suggestions which led to an improvement of our original manuscript and Dr. Shuling Yan for her help in revising the manuscript. This work is partially supported by the Nature Science Foundation of China (Grant Nos. 11871251, 11771185 and 11801231) and NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengji Du.

Additional information

Communicated by Eliot Fried.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Zhang, X. & Zhu, H. Dynamics of Nonconstant Steady States of the Sel’kov Model with Saturation Effect. J Nonlinear Sci 30, 1553–1577 (2020). https://doi.org/10.1007/s00332-020-09617-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09617-w

Keywords

Mathematics Subject Classification

Navigation