On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations


In this paper, we prove a Liouville type theorem for non-Newtonian fluid equations in \(\mathbb R^3\), having the diffusion term \({\varvec{A}}_p( u)=\nabla \cdot ( |{\varvec{D}}(u)|^{p-2} {\varvec{D}}(u))\) with \( {\varvec{D}}(u) = \frac{1}{2} (\nabla u + (\nabla u)^{ \top })\), \(3/2<p< 3\). In the case \(3/2< p\le 9/5\), we show that a suitable weak solution \(u\in W^{1, p}(\mathbb R^3)\) satisfying \( \liminf _{R \rightarrow \infty } |u_{ B(R)}| =0\) is trivial, i.e., \(u\equiv 0\). On the other hand, for \(9/5<p<3\) we prove the following Liouville type theorem: if there exists a matrix valued function \({\varvec{V}}= \{V_{ ij}\}\) such that \( \partial _jV_{ ij} =u_i\)(summation convention), whose \(L^{\frac{3p}{2p-3}} \) mean oscillation has the following growth condition at infinity,

$$\begin{aligned} {\int \!\!\!\!\!\!-}_{B(r)} |{\varvec{V}}- {\varvec{V}}_{ B(r)} |^{\frac{3p}{2p-3}} \mathrm{d}x \le C r^{\frac{9-4p}{2p-3}}\quad \forall 1< r< +\infty , \end{aligned}$$

then \(u\equiv 0\).

This is a preview of subscription content, log in to check access.


  1. Chae, D.: Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations. Commun. Math. Phys. 326, 37–48 (2014)

    MathSciNet  Article  Google Scholar 

  2. Chae, D., Wolf, J.: On Liouville type theorem for the stationary Navier-Stokes equations. Cal. Var. PDE 58(3), 111 (2019)

    MathSciNet  Article  Google Scholar 

  3. Chae, D., Wolf, J.: On Liouville type theorems for the steady Navier–Stokes equations in \({\mathbb{R}}^3\). J. Differ. Equ. 261, 5541–5560 (2016)

    Article  Google Scholar 

  4. Chae, D., Yoneda, T.: On the Liouville theorem for the stationary Navier–Stokes equations in a critical space. J. Math. Anal. Appl. 405(2), 706–710 (2013)

    MathSciNet  Article  Google Scholar 

  5. Chamorro, D., Jarrin, O., Lemarié-Rieusset, P.-G.: Some Liouville theorems for stationary Navier–Stokes equations in Lebesgue and Morrey spaces. C.R. Math. Acad. Sci. Paris. 357(2), 175–179 (2019)

    MathSciNet  Article  Google Scholar 

  6. Frehse, J., Málek, J., Steinhauer, M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34(5), 1064–1083 (2003)

    MathSciNet  Article  Google Scholar 

  7. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

    Google Scholar 

  8. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies No. 105. Princeton University Press, Princeton (1983)

    Google Scholar 

  9. Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Sc. Norm. Super. Pisa 4(5), 381–404 (1978)

    MathSciNet  MATH  Google Scholar 

  10. Koch, G., Nadirashvili, N., Seregin, G., Šverék, V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203, 83–105 (2009)

    MathSciNet  Article  Google Scholar 

  11. Korobkov, M., Pileckas, K., Russo, R.: The Liouville theorem for the steady-state Navier–Stokes problem for axially symmetric 3D solutions in absence of swirl. J. Math. Fluid Mech. 17(2), 287–293 (2015)

    MathSciNet  Article  Google Scholar 

  12. Kozono, H., Terasawa, Y., Wakasugi, Y.: A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions. J. Funct. Anal. 272, 804–818 (2017)

    MathSciNet  Article  Google Scholar 

  13. Leray, J.: Étude de diverses équations intégrales non linéaire et de quelques problémes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  14. Pokorný, M.: Cauchy problem for the non-Newtonian viscous incompressible fluid. Appl. Math. 41(3), 169–201 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Seregin, G.: Liouville type theorem for stationary Navier–Stokes equations. Nonlinearity 29, 2191–2195 (2016)

    MathSciNet  Article  Google Scholar 

  16. Seregin, G.: Remarks on Liouville type theorems for steady-state Navier–Stokes equations. Algebra Anal. 30(2), 238–248 (2018)

    MathSciNet  Google Scholar 

  17. Seregin, G., Wang, W.: Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations. Algebra i Analiz. 31(2), 269–278 (2019)

    MathSciNet  Google Scholar 

  18. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    Google Scholar 

  19. Wilkinson, W.L.: Non-Newtonian Fluids. Fluid Mechanics, Mixing and Heat Transfer. Pergamon Press, London (1960)

    Google Scholar 

Download references


Chae was partially supported by NRF Grants 2016R1A2B3011647, while Wolf has been supported by NRF Grants 2017R1E1A1A01074536.

Author information



Corresponding author

Correspondence to Dongho Chae.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Anthony Bloch.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chae, D., Wolf, J. On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations. J Nonlinear Sci 30, 1503–1517 (2020). https://doi.org/10.1007/s00332-020-09615-y

Download citation


  • Non-Newtonian fluid equations
  • Liouville type theorem

Mathematics Subject Classification

  • 35Q30
  • 76D05
  • 76D03