# On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations

## Abstract

In this paper, we prove a Liouville type theorem for non-Newtonian fluid equations in $$\mathbb R^3$$, having the diffusion term $${\varvec{A}}_p( u)=\nabla \cdot ( |{\varvec{D}}(u)|^{p-2} {\varvec{D}}(u))$$ with $${\varvec{D}}(u) = \frac{1}{2} (\nabla u + (\nabla u)^{ \top })$$, $$3/2<p< 3$$. In the case $$3/2< p\le 9/5$$, we show that a suitable weak solution $$u\in W^{1, p}(\mathbb R^3)$$ satisfying $$\liminf _{R \rightarrow \infty } |u_{ B(R)}| =0$$ is trivial, i.e., $$u\equiv 0$$. On the other hand, for $$9/5<p<3$$ we prove the following Liouville type theorem: if there exists a matrix valued function $${\varvec{V}}= \{V_{ ij}\}$$ such that $$\partial _jV_{ ij} =u_i$$(summation convention), whose $$L^{\frac{3p}{2p-3}}$$ mean oscillation has the following growth condition at infinity,

\begin{aligned} {\int \!\!\!\!\!\!-}_{B(r)} |{\varvec{V}}- {\varvec{V}}_{ B(r)} |^{\frac{3p}{2p-3}} \mathrm{d}x \le C r^{\frac{9-4p}{2p-3}}\quad \forall 1< r< +\infty , \end{aligned}

then $$u\equiv 0$$.

This is a preview of subscription content, log in to check access.

## References

1. Chae, D.: Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations. Commun. Math. Phys. 326, 37–48 (2014)

2. Chae, D., Wolf, J.: On Liouville type theorem for the stationary Navier-Stokes equations. Cal. Var. PDE 58(3), 111 (2019)

3. Chae, D., Wolf, J.: On Liouville type theorems for the steady Navier–Stokes equations in $${\mathbb{R}}^3$$. J. Differ. Equ. 261, 5541–5560 (2016)

4. Chae, D., Yoneda, T.: On the Liouville theorem for the stationary Navier–Stokes equations in a critical space. J. Math. Anal. Appl. 405(2), 706–710 (2013)

5. Chamorro, D., Jarrin, O., Lemarié-Rieusset, P.-G.: Some Liouville theorems for stationary Navier–Stokes equations in Lebesgue and Morrey spaces. C.R. Math. Acad. Sci. Paris. 357(2), 175–179 (2019)

6. Frehse, J., Málek, J., Steinhauer, M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34(5), 1064–1083 (2003)

7. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

8. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies No. 105. Princeton University Press, Princeton (1983)

9. Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Sc. Norm. Super. Pisa 4(5), 381–404 (1978)

10. Koch, G., Nadirashvili, N., Seregin, G., Šverék, V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Math. 203, 83–105 (2009)

11. Korobkov, M., Pileckas, K., Russo, R.: The Liouville theorem for the steady-state Navier–Stokes problem for axially symmetric 3D solutions in absence of swirl. J. Math. Fluid Mech. 17(2), 287–293 (2015)

12. Kozono, H., Terasawa, Y., Wakasugi, Y.: A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions. J. Funct. Anal. 272, 804–818 (2017)

13. Leray, J.: Étude de diverses équations intégrales non linéaire et de quelques problémes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

14. Pokorný, M.: Cauchy problem for the non-Newtonian viscous incompressible fluid. Appl. Math. 41(3), 169–201 (1996)

15. Seregin, G.: Liouville type theorem for stationary Navier–Stokes equations. Nonlinearity 29, 2191–2195 (2016)

16. Seregin, G.: Remarks on Liouville type theorems for steady-state Navier–Stokes equations. Algebra Anal. 30(2), 238–248 (2018)

17. Seregin, G., Wang, W.: Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations. Algebra i Analiz. 31(2), 269–278 (2019)

18. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

19. Wilkinson, W.L.: Non-Newtonian Fluids. Fluid Mechanics, Mixing and Heat Transfer. Pergamon Press, London (1960)

## Acknowledgements

Chae was partially supported by NRF Grants 2016R1A2B3011647, while Wolf has been supported by NRF Grants 2017R1E1A1A01074536.

## Author information

Authors

### Corresponding author

Correspondence to Dongho Chae.

## Ethics declarations

### Conflict of interest

The authors declare that they have no conflict of interest.