Skip to main content
Log in

On Born’s Conjecture about Optimal Distribution of Charges for an Infinite Ionic Crystal

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the problem for the optimal charge distribution on the sites of a fixed Bravais lattice. In particular, we prove Born’s conjecture about the optimality of the rock salt alternate distribution of charges on a cubic lattice (and more generally on a d-dimensional orthorhombic lattice). Furthermore, we study this problem on the two-dimensional triangular lattice and we prove the optimality of a two-component honeycomb distribution of charges. The results hold for a class of completely monotone interaction potentials which includes Coulomb-type interactions for \(d\ge 3\). In a more general setting, we derive a connection between the optimal charge problem and a minimization problem for the translated lattice theta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. “Ein endliches Stück eines einfachen kubischen Raumgitters soll so mit gleich vielen positiven und negativen Ladungen von gleichem absoluten Betrage besetzt werden, daß die elektrostatische Energie des Systems möglichst klein wird.”

References

  • Aftalion, A., Blanc, X., Nier, F.: Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates. J. Funct. Anal. 241, 661–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Alastuey, A., Jancovici, B.: On the classical two-dimensional one-component Coulomb plasma. J. Phys. 42(1), 1–12 (1981)

    Article  MathSciNet  Google Scholar 

  • Antlanger, M., Kahl, G., Mazars, M., Samaj, L., Trizac, E.: Rich polymorphic behavior of Wigner bilayers. Phys. Rev. Lett. 117(11), 118002 (2016)

    Article  Google Scholar 

  • Assoud, L., Messina, R., Löwen, H.: Stable crystalline lattices in two-dimensional binary mixtures of dipolar particles. Europhys. Lett. 80(4), 1–6 (2007)

    Article  Google Scholar 

  • Bachman, G., Narici, L., Beckenstein, E.: Fourier and Wavelet Analysis. Springer, Berlin (2002)

    MATH  Google Scholar 

  • Baernstein II, A.: A minimum problem for heat kernels of flat tori. Contemp. Math. 201, 227–243 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  • Bétermin, L.: Local optimality of cubic lattices for interaction energies. Anal. Math. Phys. (2017). https://doi.org/10.1007/s13324-017-0205-5

  • Bétermin, L., Knüpfer, H.: Optimal lattice configurations for interacting spatially extended particles. Lett. Math. Phys. (2018). https://doi.org/10.1007/s11005-018-1077-9

  • Bétermin, L.: Two-dimensional theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48(5), 3236–3269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Bétermin, L., Petrache, M.: Dimension reduction techniques for the minimization of theta functions on lattices. J. Math. Phys. 58, 071902 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. S. I. Approx. Stat. Phys. Part I 47(1), 39–74 (2018)

    MathSciNet  MATH  Google Scholar 

  • Bétermin, L., Zhang, P.: Minimization of energy per particle among Bravais lattices in \({\mathbb{R}}^2\): Lennard–Jones and Thomas–Fermi cases. Commun. Contemp. Math. 17(6), 1450049 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Bochner, S.: Theta relations with spherical harmonics. Proc. Natl. Acad. Sci. USA 37(12), 804–808 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Born, M.: Über elektrostatische Gitterpotentiale. Z. Phys. 7, 124–140 (1921)

    Article  Google Scholar 

  • Borwein, J., Glasser, M., McPhedran, R., Wan, J., Zucker, I.: Lattice Sums Then and Now (Encyclopedia of Mathematics and its Applications). Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139626804

  • Bouman, N., Draisma, J., Van Leeuwaarden, J.S.H.: Energy minimization of repelling particles on a toric grid. SIAM J. Discrete Math. 27(3), 1295–1312 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Cassels, J.W.S.: On a problem of Rankin about the Epstein zeta-function. Proc. Glasgow Math. Assoc. 4, 73–80 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, vol. 290. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  • Coulangeon, R.: Spherical designs and zeta functions of lattices. Int. Math. Res. Not. 2006(16), 49620 (2006)

    MathSciNet  MATH  Google Scholar 

  • Coulangeon, R., Schürmann, A.: Local energy optimality of periodic sets. (Preprint) arXiv:1802.02072 (2018)

  • Coulangeon, R., Lazzarini, G.: Spherical designs and heights of euclidean lattices. J. Number Theory 141, 288–315 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Coulangeon, R., Schürmann, A.: Energy minimization, periodic sets and spherical designs. Int. Math. Res. Not. 4, 829–848 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • de Leeuw, S .W., Perram, J .W., Smith, E.R.: Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proc. R. Soc. Lon. A Math. Phys. Eng. Sci. 373(1752), 27–56 (1980)

    Article  MathSciNet  Google Scholar 

  • De Luca, L., Friesecke, G.: Crystallization in two dimensions and a discrete Gauss–Bonnet theorem. J. Nonlinear Sci. 28(1), 69–90 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Diananda, P.H.: Notes on two lemmas concerning the Epstein zeta-function. Proc. Glasgow Math. Assoc. 6, 202–204 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • E, W., Li, D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286, 1099–1140 (2009)

  • Emersleben, O.: Zetafunktionen und elektrostatische Gitterpotentiale. I. Phys. Z. 24, 73–80 (1923)

    MATH  Google Scholar 

  • Ennola, V.: A lemma about the Epstein zeta-function. Proc. Glasgow Math. Assoc. 6, 198–201 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Epstein, P.: Zur Theorie allgemeiner Zetafunctionen. Math. Ann. 56(4), 615–644 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  • Ewald, P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64, 253–287 (1921)

    Article  MATH  Google Scholar 

  • Faulhuber, M., Steinerberger, S.: Optimal gabor frame bounds for separable lattices and estimates for Jacobi theta functions. J. Math. Anal. Appl. 445(1), 407–422 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Flatley, L., Theil, F.: Face-centred cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 219(1), 363–416 (2015)

    Article  MATH  Google Scholar 

  • Hardin, D.P., Saff, E.B., Simanek, Brian: Periodic discrete energy for long-range potentials. J. Math. Phys. 55(12), 123509 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Hay, M.B., Workman, R.K., Manne, S.: Two-dimensional condensed phases from particles with tunable interactions. Phys. Rev. E 67(1), 012401 (2003)

    Article  Google Scholar 

  • Heitmann, R.C., Radin, C.: The ground state for sticky disks. J. Stat. Phys. 22, 281–287 (1980)

    Article  MathSciNet  Google Scholar 

  • Henn, A.: The hexagonal lattice and the Epstein zeta function. In: Dynamical Systems, Number Theory and Applications, pp. 127–140 (2016). https://doi.org/10.1142/9789814699877_0007

  • Krazer, A., Prym, E.: Neue Grundlagen einer Theorie der Allgemeinen Theta-funktionen. Teubner, Leipzig (1893)

    MATH  Google Scholar 

  • Levashov, V.A., Thorpe, M.F., Southern, B.W.: Charged lattice gas with a neutralizing background. Phys. Rev. B 67(22), 224109 (2003)

    Article  Google Scholar 

  • Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Commun. Math. Phys. 328, 545–571 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Mainini, E., Piovano, P., Stefanelli, U.: Finite crystallization in the square lattice. Nonlinearity 27, 717–737 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Montgomery, H.L.: Minimal theta functions. Glasgow Math. J. 30(1), 75–85 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Mueller, E.J., Ho, T.-L.: Two-component Bose–Einstein condensates with a large number of vortices. Phys. Rev. Lett. 88(18), 180403 (2002)

    Article  Google Scholar 

  • Nonnenmacher, S., Voros, A.: Chaotic eigenfunctions in phase space. J. Stat. Phys. 92, 431–518 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Osychenko, O.N., Astrakharchik, G.E., Boronat, J.: Ewald method for polytropic potentials in arbitrary dimensionality. Mol. Phys. 110(4), 227–247 (2012)

    Article  Google Scholar 

  • Pauling, L.: The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51(4), 1010–1026 (1929)

    Article  Google Scholar 

  • Perram, J.W., de Leeuw, S.W.: Statistical mechanics of two-dimensional coulomb systems. I. Lattice sums and simulation methodology. Phys. A 109(1–2), 237–250 (1981)

    Article  MathSciNet  Google Scholar 

  • Radin, C.: The ground state for soft disks. J. Stat. Phys. 26(2), 365–373 (1981)

    Article  MathSciNet  Google Scholar 

  • Rankin, R.A.: A minimum problem for the Epstein zeta-function. Proc. Glasgow Math. Assoc. 1, 149–158 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  • Rougerie, N., Serfaty, S.: Higher dimensional coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69(3), 519–605 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Samaj, L., Trizac, E.: Critical phenomena and phase sequence in a classical bilayer Wigner crystal at zero temperature. Phys. Rev. B 85(20), 205131 (2012)

    Article  Google Scholar 

  • Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635–743 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Sarnak, P., Strömbergsson, A.: Minima of Epstein’s zeta function and heights of flat tori. Invent. Math. 165, 115–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Schiff, J.L.: The Laplace transform: theory and applications. Springer, Berlin (2013)

    Google Scholar 

  • Stein, E.M., Shakarchi, R.: Complex Analysis. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  • Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ventevogel, W.J.: On the configuration of systems of interacting particle with minimum potential energy per particle. Phys. A Stat. Mech. Appl. 92A, 343 (1978)

    Article  Google Scholar 

  • Ventevogel, W.J., Nijboer, B.R.A.: On the configuration of systems of interacting particle with minimum potential energy per particle. Phys. A Stat. Mech. Appl. 98A, 274–288 (1979)

    Article  MathSciNet  Google Scholar 

  • Xiao, Y., Thorpe, M.F., Parkinson, J.B.: Two-dimensional discrete coulomb alloy. Phys. Rev. B 59(1), 277–285 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

LB is grateful for the support of MATCH during his stay in Heidelberg. Both authors would like to thank Florian Nolte for interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bétermin.

Additional information

Communicated by Michael Ward.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bétermin, L., Knüpfer, H. On Born’s Conjecture about Optimal Distribution of Charges for an Infinite Ionic Crystal. J Nonlinear Sci 28, 1629–1656 (2018). https://doi.org/10.1007/s00332-018-9460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9460-3

Keywords

Mathematics Subject Classification

Navigation