Deteriorated functional and structural brain networks and normally appearing functional–structural coupling in diabetic kidney disease: a graph theory-based magnetic resonance imaging study

Abstract

Purpose

This study was conducted in order to investigate the topological organization of functional and structural brain networks in diabetic kidney disease (DKD) and its potential clinical relevance.

Methods

Two hundred two subjects (62 DKD patients, 60 diabetes mellitus [DM] patients, and 80 healthy controls) underwent laboratory examination, neuropsychological test, and magnetic resonance imaging (MRI). Large-scale functional and structural brain networks were constructed and graph theoretical network analyses were performed. The effect of renal function on brain functional and structural networks in DKD patients was further evaluated. Correlations were performed between network properties and neuropsychological scores and clinical variables.

Results

Progressing deteriorated global and local network topology organizations (especially for functional network) were observed for DKD patients compared with control subjects (all p < 0.05, Bonferroni-corrected), with intermediate values for the patients with DM. DKD patients showed normally appearing functional–structural coupling compared with controls, while DM patients manifested functional–structural decoupling (p < 0.05, Bonferroni-corrected). Impaired kidney function markedly affected functional and structural network organization in DKD patients (all p < 0.05). Urea nitrogen correlated with global and local efficiency in the structural networks (r = − 0.551, p < 0.001; r = − 0.476, p < 0.001, respectively). Global and local efficiency in the structural networks and normalized characteristic path length in the functional networks were associated with information processing speed and/or psychomotor speed.

Conclusion

DKD patients showed enhanced functional and structural brain network disruption and normally appearing functional–structural coupling compared with DM patients, which correlated with kidney function, renal toxins, and cognitive performance.

Key Points

• DKD patients showed markedly disrupted functional and structural brain network efficiency measures compared with DM patients and healthy controls.

• Reduced kidney function clearly deteriorated functional and structural brain networks in DKD patients.

• DKD patients displayed normally appearing functional–structural coupling compared with DM patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

γ :

Normalized clustering coefficient

λ :

Normalized characteristic path length

σ :

Small-worldness

AAL:

Automated anatomical labeling

ADA:

American Diabetes Association

ANCOVA:

Analysis of covariance

BUN:

Blood urea nitrogen

Cp:

Clustering coefficient

Cyst C:

Cystatin C

DKD:

Diabetic kidney disease

DM:

Diabetes mellitus

DPARSF:

Data Processing Assistant for Resting-State fMRI

DS:

Deep subcortical

DTI:

Diffusion tensor imaging

Eg:

Global efficiency

eGFR:

Estimated glomerular filtration rate

Eloc:

Local efficiency

FBG:

Fasting blood glucose

HbA1c:

Hemoglobin A1c

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

Lp:

Characteristic path length

LTT:

Line Tracing Test

MMSE:

Mini-Mental State Examination

MoCA:

Montreal Cognitive Assessment

MRI:

Magnetic resonance imaging

NCT-A:

Number Connection Test type-A

PV:

Periventricular

rs-fMRI:

Resting-state functional magnetic resonance imaging

SAS:

Self-Rating Anxiety Scale

Scr:

Serum creatinine

SDS:

Self-Rating Depression Scale

SDT:

Serial Dotting Test

TC:

Total cholesterol

TIV:

Total intracranial volume

Tri:

Triglycerides

UA:

Uric acid

WML:

White matter lesions

References

  1. 1.

    Ingelfinger JR, Jarcho JA (2017) Increase in the incidence of diabetes and its implications. N Engl J Med 376:1473–1474

    Article  PubMed  Google Scholar 

  2. 2.

    Polonsky KS (2012) The past 200 years in diabetes. N Engl J Med 367:1332–1340

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Yang W, Lu J, Weng J et al (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362:1090–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Gregg EW, Li Y, Wang J et al (2014) Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med 370:1514–1523

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    [No authors listed] (2015) Diabetic kidney disease: what does the next era hold? Lancet Diabetes Endocrinol 3:665

    Article  Google Scholar 

  6. 6.

    de Boer IH (2017) A new chapter for diabetic kidney disease. N Engl J Med 377:885–887

    Article  PubMed  Google Scholar 

  7. 7.

    Reijmer YD, Leemans A, Brundel M, Kappelle LJ, Biessels GJ, Utrecht Vascular Cognitive Impairment Study Group (2013) Disruption of the cerebral white matter network is related to slowing of information processing speed in patients with type 2 diabetes. Diabetes 62:2112–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    van Bussel FC, Backes WH, van Veenendaal TM et al (2016) Functional brain networks are altered in type 2 diabetes and prediabetes: signs for compensation of cognitive decrements? The Maastricht study. Diabetes 65:2404–2413

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Sink KM, Divers J, Whitlow CT et al (2015) Cerebral structural changes in diabetic kidney disease: African American-Diabetes Heart Study MIND. Diabetes Care 38:206–212

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Murea M, Hsu FC, Cox AJ et al (2015) Structural and functional assessment of the brain in European Americans with mild-to-moderate kidney disease: Diabetes Heart Study-MIND. Nephrol Dial Transplant 30:1322–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14:277–290

    Article  PubMed  Google Scholar 

  12. 12.

    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  Google Scholar 

  13. 13.

    Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Vaessen MJ, Jansen JF, Vlooswijk MC et al (2012) White matter network abnormalities are associated with cognitive decline in chronic epilepsy. Cereb Cortex 22:2139–2147

    Article  PubMed  Google Scholar 

  15. 15.

    Bassett DS, Bullmore ET (2009) Human brain networks in health and disease. Curr Opin Neurol 22:340–347

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Zheng G, Wen J, Zhang L et al (2014) Altered brain functional connectivity in hemodialysis patients with end-stage renal disease: a resting-state functional MR imaging study. Metab Brain Dis 29:777–786

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Zhang LJ, Zheng G, Zhang L et al (2012) Altered brain functional connectivity in patients with cirrhosis and minimal hepatic encephalopathy: a functional MR imaging study. Radiology 265:528–536

    Article  PubMed  Google Scholar 

  18. 18.

    Zhang LJ, Zheng G, Zhang L et al (2014) Disrupted small world networks in patients without overt hepatic encephalopathy: a resting state fMRI study. Eur J Radiol 83:1890–1899

    Article  PubMed  Google Scholar 

  19. 19.

    American Diabetes Association (2018) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018. Diabetes Care 41:S13–S27

    Article  Google Scholar 

  20. 20.

    KDOQI (2007) KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 49:S12–S154

  21. 21.

    Van der Elst W, Van Boxtel MP, Van Breukelen GJ, Jolles J (2006) The Stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment 13:62–79

    Article  PubMed  Google Scholar 

  22. 22.

    Zung WW (1971) A rating instrument for anxiety disorders. Psychosomatics 12:371–379

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Faravelli C, Albanesi G, Poli E (1986) Assessment of depression: a comparison of rating scales. J Affect Disord 11:245–253

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Wang YF, Kong X, Lu GM, Zhang LJ (2017) Diabetes mellitus is associated with more severe brain spontaneous activity impairment and gray matter loss in patients with cirrhosis. Sci Rep 7:7775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhang LJ, Wen J, Liang X et al (2016) Brain default mode network changes after renal transplantation: a diffusion-tensor imaging and resting-state functional MR imaging study. Radiology 278:485–495

    Article  PubMed  Google Scholar 

  26. 26.

    Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Cui Z, Zhong S, Xu P, He Y, Gong G (2013) PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci 7:42

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Fornito A, Zalesky A, Bullmore ET (2010) Network scaling effects in graph analytic studies of human resting-state fMRI data. Front Syst Neurosci 4:22

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Braun U, Plichta MM, Esslinger C et al (2012) Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 59:1404–1412

    Article  PubMed  Google Scholar 

  32. 32.

    Zhang J, Wang J, Wu Q et al (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70:334–342

    Article  PubMed  Google Scholar 

  33. 33.

    Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Bournonville C, Hénon H, Dondaine T et al (2018) Identification of a specific functional network altered in poststroke cognitive impairment. Neurology 90:e1879–e1888

    Article  PubMed  Google Scholar 

  35. 35.

    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    Article  PubMed  Google Scholar 

  37. 37.

    Lynall ME, Bassett DS, Kerwin R et al (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS et al (2010) Loss of ‘small-world’ networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional connectivity. PLoS One 5:e13788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zhang J, Liu Z, Li Z et al (2016) Disrupted white matter network and cognitive decline in type 2 diabetes patients. J Alzheimers Dis 53:185–195

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Hill CJ, Cardwell CR, Patterson CC et al (2014) Chronic kidney disease and diabetes in the National Health Service: a cross-sectional survey of the U.K. National Diabetes Audit. Diabet Med 31:448–454

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Doshi SM, Friedman AN (2017) Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol 12:1366–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tong L, Adler SG (2018) Diabetic kidney disease. Clin J Am Soc Nephrol 13:335–338

    Article  PubMed  Google Scholar 

  43. 43.

    Luo S, Qi RF, Wen JQ et al (2016) Abnormal intrinsic brain activity patterns in patients with end-stage renal disease undergoing peritoneal dialysis: a resting-state functional MR imaging study. Radiology 278(1):181–189

    Article  PubMed  Google Scholar 

  44. 44.

    Kong X, Wen JQ, Qi RF et al (2014) Diffuse interstitial brain edema in patients with end-stage renal disease undergoing hemodialysis: a tract-based spatial statistics study. Medicine (Baltimore) 93:e313

    Article  Google Scholar 

  45. 45.

    Bugnicourt JM, Godefroy O, Chillon JM, Choukroun G, Massy ZA (2013) Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. J Am Soc Nephrol 24:353–363

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Zhang Z, Liao W, Chen H et al (2011) Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134:2912–2928

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zalesky A, Fornito A, Harding IH et al (2010) Whole-brain anatomical networks: does the choice of nodes matter. Neuroimage 50:970–983

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China (81322020, 81230032, 81471644).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Long Jiang Zhang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Long Jiang Zhang.

Conflict of interest

The authors declare that they have no conflicts of interest.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Study subjects or cohorts overlap

Some study subjects or cohorts have not been previously reported.

Methodology

• prospective

• observational

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 63 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.F., Gu, P., Zhang, J. et al. Deteriorated functional and structural brain networks and normally appearing functional–structural coupling in diabetic kidney disease: a graph theory-based magnetic resonance imaging study. Eur Radiol 29, 5577–5589 (2019). https://doi.org/10.1007/s00330-019-06164-1

Download citation

Keywords

  • Diabetic nephropathies
  • Diabetes mellitus
  • Diffusion tensor imaging
  • Magnetic resonance imaging